Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea.
Ajou Healthcare AI Research Center, Suwon, Republic of Korea.
In Vivo. 2024 Nov-Dec;38(6):2864-2872. doi: 10.21873/invivo.13767.
BACKGROUND/AIM: Breast cancer remains a major global health concern. This study aimed to develop a deep-learning-based artificial intelligence (AI) model that predicts the malignancy of mammographic lesions and reduces unnecessary biopsies in patients with breast cancer.
In this retrospective study, we used deep-learning-based AI to predict whether lesions in mammographic images are malignant. The AI model learned the malignancy as well as margins and shapes of mass lesions through multi-label training, similar to the diagnostic process of a radiologist. We used the Curated Breast Imaging Subset of Digital Database for Screening Mammography. This dataset includes annotations for mass lesions, and we developed an algorithm to determine the exact location of the lesions for accurate classification. A multi-label classification approach enabled the model to recognize malignancy and lesion attributes.
Our multi-label classification model, trained on both lesion shape and margin, demonstrated superior performance compared with models trained solely on malignancy. Gradient-weighted class activation mapping analysis revealed that by considering the margin and shape, the model assigned higher importance to border areas and analyzed pixels more uniformly when classifying malignant lesions. This approach improved diagnostic accuracy, particularly in challenging cases, such as American College of Radiology Breast Imaging-Reporting and Data System categories 3 and 4, where the breast density exceeded 50%.
This study highlights the potential of AI in improving the diagnosis of breast cancer. By integrating advanced techniques and modern neural network designs, we developed an AI model with enhanced accuracy for mammographic image analysis.
背景/目的:乳腺癌仍然是一个全球性的主要健康问题。本研究旨在开发一种基于深度学习的人工智能(AI)模型,以预测乳腺病变的恶性程度,并减少乳腺癌患者的不必要活检。
在这项回顾性研究中,我们使用基于深度学习的 AI 来预测乳腺图像中的病变是否为恶性。该 AI 模型通过多标签训练来学习恶性肿瘤以及肿块病变的边缘和形状,类似于放射科医生的诊断过程。我们使用了经过筛选的乳腺成像数字数据库子集(Curated Breast Imaging Subset of Digital Database for Screening Mammography)。该数据集包括对肿块病变的注释,我们开发了一种算法来确定病变的确切位置,以进行准确分类。多标签分类方法使模型能够识别恶性肿瘤和病变属性。
我们的多标签分类模型,同时针对病变形状和边缘进行训练,与仅针对恶性肿瘤进行训练的模型相比,表现出了更高的性能。梯度加权类激活映射分析表明,通过考虑边缘和形状,该模型在对恶性病变进行分类时,会对边界区域赋予更高的重要性,并更均匀地分析像素。这种方法提高了诊断准确性,特别是在具有挑战性的情况下,例如美国放射学院乳腺成像报告和数据系统(American College of Radiology Breast Imaging-Reporting and Data System)类别 3 和 4,其中乳房密度超过 50%。
本研究强调了 AI 在改善乳腺癌诊断方面的潜力。通过整合先进技术和现代神经网络设计,我们开发了一种具有更高准确性的 AI 模型,用于乳腺图像分析。