Suppr超能文献

研究骨支架中的壁面剪应力和静压:孔隙率与流体流动动力学的研究

Investigating wall shear stress and the static pressure in bone scaffolds: a study of porosity and fluid flow dynamics.

作者信息

Gadgil Vedang, Kumbhojkar Shriram, Sapre Tushar, Deshmukh Prathamesh, Dhatrak Pankaj

机构信息

Department of Mechanical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India.

出版信息

Biomech Model Mechanobiol. 2025 Feb;24(1):185-195. doi: 10.1007/s10237-024-01904-9. Epub 2024 Oct 30.

Abstract

In bone tissue engineering, scaffolds are crucial as they provide a suitable structure for cell proliferation. Transporting Dulbecco's Modified Eagle Medium (DMEM) to the cells and regulating the scaffold's biocompatibility are both controlled by the dynamics of the fluid passing through the scaffold pores. Scaffold design selection and modeling are thus important in tissue engineering to achieve successful bone regeneration. This study aims to design and analyze three scaffold designs-Face-Centered Cubic (FCC), and two newly developed designs Octagonal Truss and a Square Pyramid with four porosity variations. The research aims to analyze the effect of design and porosity variation on pressure and wall shear stress, essential for analyzing scaffold biocompatibility in tissue engineering. Three scaffold designs with varying porosities with strut diameters ranging from 0.3  to 0.6 mm were modeled to analyze the behavior using BioMed Clear Resin. The fluid dynamics within these scaffolds were then examined using Computational Fluid Dynamics (CFD) to understand how different porosity levels affect fluid flow pressure and wall shear stress. The findings revealed variations in wall shear stress and their influence on cell proliferation. The maximum value of wall shear stress (WSS) is observed in the Square Pyramid model. The analysis shows that WSS at the inlet decreases as strut diameters increase or porosity percentages rise offering valuable insights for the development of effective scaffold designs. It can be concluded from the results that the Square Pyramid design has the highest value of WSS, thus increasing the chances of cell growth. From a biological perspective, the results of this work show promise for creating better scaffolds for tissue engineering.

摘要

在骨组织工程中,支架至关重要,因为它们为细胞增殖提供了合适的结构。将杜氏改良 Eagle 培养基(DMEM)输送到细胞以及调节支架的生物相容性都由通过支架孔隙的流体动力学控制。因此,支架设计的选择和建模在组织工程中对于实现成功的骨再生非常重要。本研究旨在设计和分析三种支架设计——面心立方(FCC),以及两种新开发的设计八角桁架和四角锥,并具有四种孔隙率变化。该研究旨在分析设计和孔隙率变化对压力和壁面剪应力的影响,这对于分析组织工程中支架的生物相容性至关重要。对三种孔隙率不同、支柱直径范围为 0.3 至 0.6 毫米的支架设计进行建模,使用生物医学透明树脂分析其行为。然后使用计算流体动力学(CFD)检查这些支架内的流体动力学,以了解不同孔隙率水平如何影响流体流动压力和壁面剪应力。研究结果揭示了壁面剪应力的变化及其对细胞增殖的影响。在四角锥模型中观察到壁面剪应力(WSS)的最大值。分析表明,随着支柱直径增加或孔隙率百分比上升,入口处的 WSS 会降低,这为开发有效的支架设计提供了有价值的见解。从结果可以得出结论,四角锥设计具有最高的 WSS 值,从而增加了细胞生长的机会。从生物学角度来看,这项工作的结果为创建更好的组织工程支架显示出了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验