Liu Shuo, Dun Chaochao, Yang Feipeng, Tung Kang-Lan, Wierzbicki Dominik, Ghose Sanjit, Chen Kaiwen, Chen Linfeng, Ciora Richard, Khan Mohd A, Xuan Zhengxi, Yu Miao, Urban Jeffrey J, Swihart Mark T
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Nat Commun. 2024 Oct 30;15(1):9365. doi: 10.1038/s41467-024-53678-4.
Metal-organic frameworks (MOFs) are highly attractive porous materials with applications spanning the fields of chemistry, physics, biology, and engineering. Their exceptional porosity and structural flexibility have led to widespread use in catalysis, separation, biomedicine, and electrochemistry. Currently, most MOFs are synthesized under equilibrium liquid-phase reaction conditions. Here we show a general and versatile non-equilibrium flame aerosol synthesis of MOFs, in which rapid kinetics of MOF formation yields two distinct classes of MOFs, nano-crystalline MOFs and amorphous MOFs. A key advantage of this far-from-equilibrium synthesis is integration of different metal cations within a single MOF phase, even when this is thermodynamically unfavorable. This can, for example, produce single-atom catalysts and bimetallic MOFs of arbitrary metal pairs. Moreover, we demonstrate that dopant metals (e.g., Pt, Pd) can be exsolved from the MOF framework by reduction, forming nanoclusters anchored on the MOF. A prototypical example of such a material exhibited outstanding performance as a CO oxidation catalyst. This general synthesis route opens new opportunities in MOF design and applications across diverse fields and is inherently scalable for continuous production at industrial scales.
金属有机框架材料(MOFs)是极具吸引力的多孔材料,其应用涵盖化学、物理、生物学和工程学等领域。它们卓越的孔隙率和结构灵活性使其在催化、分离、生物医学和电化学等方面得到广泛应用。目前,大多数MOFs是在平衡液相反应条件下合成的。在此,我们展示了一种通用且多功能的非平衡火焰气溶胶合成MOFs的方法,其中MOF形成的快速动力学产生了两类不同的MOFs,即纳米晶MOFs和非晶MOFs。这种远离平衡合成的一个关键优势是,即使在热力学上不利的情况下,也能在单一MOF相中整合不同的金属阳离子。例如,这可以制备任意金属对的单原子催化剂和双金属MOFs。此外,我们证明掺杂金属(如Pt、Pd)可以通过还原从MOF框架中析出,形成锚定在MOF上的纳米团簇。这种材料的一个典型例子作为CO氧化催化剂表现出优异的性能。这种通用的合成路线为MOF在不同领域的设计和应用开辟了新机遇,并且本质上可扩展用于工业规模的连续生产。