Suppr超能文献

通过LIF dombi方法在商业规模上优化自动驾驶车辆控制系统的可靠性。

Optimization of autonomous vehicle control system reliability on a commercial scale through LIF dombi methodologies.

作者信息

Alolaiyan Hanan, Hayat Misbah, Shuaib Umer, Razaq Abdul, Baidar Abdul Wakil, Xin Qin

机构信息

Department of Mathematics, College of Science, King Saud University, Riyadh, Saudi Arabia.

Department of Mathematics, Government College University, Faisalabad, 38000, Pakistan.

出版信息

Sci Rep. 2024 Oct 30;14(1):26134. doi: 10.1038/s41598-024-77586-1.

Abstract

The resilient framework of Linguistic Intuitionistic Fuzzy Sets (LIFSs) allows for the representation and management of uncertainties related to intuitionistic judgments and linguistic expressions. Recent advances in passive and active safety systems have reduced highway fatalities. Autonomous vehicles can improve safety, efficiency, and mobility by navigating traffic without a driver. One of the primary benefits associated with this technology is that it reduces the number of traffic collisions that result in millions of fatalities and numerous injuries. In this research work, we devise two novel aggregation operators: the linguistic intuitionistic fuzzy Dombi ordered weighted averaging (LIFDOWA) operator and the linguistic intuitionistic fuzzy Dombi ordered weighted geometric (LIFDOWG) operator, and explore their fundamental structural properties. We provide innovative score and accuracy functions for multiple attribute decision-making (MADM) problems within the framework of LIF knowledge. Moreover, we use these techniques to develop a specialized algorithm for MADM issues that addresses the complexities arising from ambiguous data during the selection process. We also demonstrate the effectiveness of our proposed methods by applying them to solve the MADM scenario of selecting an optimal approach to improve the credibility of autonomous vehicle control systems on a commercial scale. In addition, we also compare and evaluate the authenticity and practicability of the newly designed techniques in comparison to existing methodologies.

摘要

语言直觉模糊集(LIFS)的弹性框架允许表示和管理与直觉判断和语言表达相关的不确定性。被动和主动安全系统的最新进展减少了高速公路上的死亡人数。自动驾驶车辆可以通过无人驾驶来提高安全性、效率和机动性。与这项技术相关的主要好处之一是它减少了导致数百万死亡和大量受伤的交通碰撞数量。在这项研究工作中,我们设计了两种新颖的聚合算子:语言直觉模糊Dombi有序加权平均(LIFDOWA)算子和语言直觉模糊Dombi有序加权几何(LIFDOWG)算子,并探索它们的基本结构特性。我们为LIF知识框架内的多属性决策(MADM)问题提供了创新的得分和准确性函数。此外,我们使用这些技术开发了一种针对MADM问题的专门算法,该算法解决了选择过程中因模糊数据而产生的复杂性。我们还通过将所提出的方法应用于解决在商业规模上选择最佳方法以提高自动驾驶车辆控制系统可信度的MADM场景,展示了我们方法的有效性。此外,我们还与现有方法比较和评估了新设计技术的真实性和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad32/11525560/b36ecee7953b/41598_2024_77586_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验