Suppr超能文献

基于生成对抗网络的X射线相衬成像恢复

Restoration of X-ray phase-contrast imaging based on generative adversarial networks.

作者信息

Zeng Jiacheng, Huang Jianheng, Zeng Jiancheng, Li Jiaqi, Lei Yaohu, Liu Xin, Ye Huacong, Du Yang, Zhang Chenggong

机构信息

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.

School of Data Science and Engineering, Guangdong Polytechnic Normal University, Guangzhou, China.

出版信息

Sci Rep. 2024 Oct 31;14(1):26198. doi: 10.1038/s41598-024-77937-y.

Abstract

For light-element materials, X-ray phase contrast imaging provides better contrast compared to absorption imaging. While the Fourier transform method has a shorter imaging time, it typically results in lower image quality; in contrast, the phase-shifting method offers higher image quality but is more time-consuming and involves a higher radiation dose. To rapidly reconstruct low-dose X-ray phase contrast images, this study developed a model based on Generative Adversarial Networks (GAN), incorporating custom layers and self-attention mechanisms to recover high-quality phase contrast images. We generated a simulated dataset using Kaggle's X-ray data to train the GAN, and in simulated experiments, we achieved significant improvements in Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). To further validate our method, we applied it to fringe images acquired from three phase contrast systems: a single-grating phase contrast system, a Talbot-Lau system, and a cascaded grating system. The current results demonstrate that our method successfully restored high-quality phase contrast images from fringe images collected in experimental settings, though it should be noted that these results were achieved using relatively simple sample configurations.

摘要

对于轻元素材料,与吸收成像相比,X射线相衬成像提供了更好的对比度。虽然傅里叶变换方法成像时间较短,但通常会导致图像质量较低;相比之下,相移方法提供更高的图像质量,但更耗时且辐射剂量更高。为了快速重建低剂量X射线相衬图像,本研究开发了一种基于生成对抗网络(GAN)的模型,该模型结合了自定义层和自注意力机制以恢复高质量的相衬图像。我们使用Kaggle的X射线数据生成了一个模拟数据集来训练GAN,并且在模拟实验中,我们在峰值信噪比(PSNR)和结构相似性指数(SSIM)方面取得了显著改进。为了进一步验证我们的方法,我们将其应用于从三个相衬系统获取的条纹图像:单光栅相衬系统、塔尔博特-劳厄系统和级联光栅系统。目前的结果表明,我们的方法成功地从实验设置中收集的条纹图像恢复了高质量的相衬图像,不过应该注意的是,这些结果是使用相对简单的样品配置获得的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab8c/11525792/d34c5dbf8dae/41598_2024_77937_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验