Hiraoka Kenzo, Rankin-Turner Stephanie, Usmanov Dilshadbek T, Akhmedov Sherzod M, Ninomiya Satoshi
Clean Energy Research Center, University of Yamanashi, Kofu, Yamanashi, Japan.
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Rapid Commun Mass Spectrom. 2025 Jan 15;39(1):e9933. doi: 10.1002/rcm.9933.
The objective of the present study is to investigate desorption of low-volatility analytes in Leidenfrost phenomenon-assisted thermal desorption (LPTD).
LPTD was investigated for 5 μL solutions of 0.03 ppm cocaine or morphine in methanol (sample weight: 0.12 ng) by using heated metal surfaces (240°C) polished by abrasives with grit numbers from #5000 (3 μm) to #100 (200 μm).
The analyte signals were detected only after the complete evaporation of methanol solvent and the formed analyte residues levitated on the heater surface. The strongest ion signals were obtained with grit number #100.
Because the analyte residue does not come into contact with the heated surface but levitates on the hot substrate after the evaporation of the solvent, thermal decomposition of the analyte is largely suppressed. This is a great merit of LPTD for trace analysis of low-volatility and thermally labile compounds.
本研究的目的是研究莱顿弗罗斯特现象辅助热解吸(LPTD)中低挥发性分析物的解吸情况。
通过使用由粒度从#5000(约3μm)到#100(约200μm)的磨料抛光的加热金属表面(240°C),对甲醇中0.03 ppm可卡因或吗啡的5μL溶液(样品重量:0.12 ng)进行LPTD研究。
仅在甲醇溶剂完全蒸发且形成的分析物残留物悬浮在加热器表面后才检测到分析物信号。粒度为#100时获得最强的离子信号。
由于分析物残留物在溶剂蒸发后不与加热表面接触而是悬浮在热基板上,因此很大程度上抑制了分析物的热分解。这是LPTD用于低挥发性和热不稳定化合物痕量分析的一大优点。