Fang Ye-Guang, Li Xiaoxu, Yuan Chang, Li Xiaojiao, Yuan Xu, Zhang Dongmei, Zhang Xinxing, Zhu Chongqin, Fang Wei-Hai
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
College of Chemistry, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China.
Angew Chem Int Ed Engl. 2025 Feb 3;64(6):e202417920. doi: 10.1002/anie.202417920. Epub 2024 Nov 16.
Water microdroplets have been demonstrated to exhibit extraordinary chemical behaviors, including the abilities to accelerate chemical reactions by several orders of magnitude and to trigger reactions that cannot occur in bulk water. One of the most striking examples is the spontaneous generation of hydroxyl radical from hydroxide ions. Alcohols and alkoxide ions, being structurally similar to water and hydroxide ions, might exhibit similar behavior on microdroplets. Here, we report the spontaneous generation of alkoxide radicals from alcohols (RCHOH) in aqueous microdroplets through quantum chemical calculations, quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations, ab initio MD simulations, and mass spectrometry. Our results show that an electric field (EF) on the order of 10 V/Å and partial solvation at the air-water interface jointly promote the dissociation of RCHOH into RCHO and HO ions. QM/MM MD simulations indicate that RCHO can be ionized to produce RCHO⋅ radicals on the microdroplet surface. Furthermore, partial solvation and the EF collaboratively catalyze the isomerization of the RCHO⋅ radical into a more stable tautomer, R⋅CHOH. This study highlights the molecular mechanisms underlying the widespread generation of radicals at the microdroplet surface and provides insights into the importance of fundamental alcohol chemistry in the atmosphere.
已证明水微滴表现出非凡的化学行为,包括将化学反应加速几个数量级以及引发在 bulk 水中无法发生的反应的能力。最引人注目的例子之一是由氢氧根离子自发产生羟基自由基。醇和醇盐离子在结构上与水和氢氧根离子相似,可能在微滴上表现出类似的行为。在此,我们通过量子化学计算、量子力学/分子力学(QM/MM)分子动力学(MD)模拟、从头算 MD 模拟和质谱法,报告了在水性微滴中由醇(RCHOH)自发产生醇盐自由基的情况。我们的结果表明,约 10 V/Å 的电场(EF)和空气 - 水界面处的部分溶剂化共同促进 RCHOH 解离为 RCHO 和 HO 离子。QM/MM MD 模拟表明,RCHO 可在微滴表面电离产生 RCHO⋅自由基。此外,部分溶剂化和 EF 协同催化 RCHO⋅自由基异构化为更稳定的互变异构体 R⋅CHOH。本研究突出了微滴表面自由基广泛产生背后的分子机制,并深入了解了大气中基础醇化学的重要性。