Zhao Jiamin, Kou Meimei, Yuan Qing, Yuan Ying, Zhao Jinsheng
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
Small. 2025 Jan;21(1):e2406022. doi: 10.1002/smll.202406022. Epub 2024 Oct 31.
Tungsten carbide (WC) is a promising alternative to platinum catalysts for hydrogen evolution reaction (HER). However, strong tungsten-hydrogen bond hinders hydrogen desorption while favoring H reduction, thus limiting HER kinetics. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, a ruthenium (Ru) doped-driven activated hydrogen migration from WC surface to Ru is reported. This approach achieved high activity with an ultralow overpotential of 9.0 mV at 10 mA·cm and superior stability at an industrial-grade current density of 1.0 A·cm @ 1.65 V. In situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and operando electrochemical impedance spectra revealed that this exceptional hydrogen production-which surpasses that of previously reported Pt/C catalysts-is attributable to the outstanding ability of WC to induce water dissociation and hydrogen spillover from WC to Ru surface. During the HER process, the rigid interfacial water network negatively affected the HER efficiency under alkaline conditions. The WC sites disrupted this rigid structure, facilitating the contact between activated hydrogen (H) and WC sites. Subsequently, H migrates to Ru surface, where hydrogen recombination occurs to produce H. This work paves a new avenue for the construction of coupled catalysts at the atomic scale to facilitate HER electrocatalysis.
碳化钨(WC)是用于析氢反应(HER)的铂催化剂的一种有前景的替代物。然而,强的钨 - 氢键阻碍了氢的脱附,同时有利于H的还原,从而限制了析氢反应动力学。受多相催化中氢溢流现象的启发,报道了一种钌(Ru)掺杂驱动的氢从WC表面向Ru的活化迁移。这种方法在10 mA·cm²时实现了9.0 mV的超低过电位的高活性,并在1.0 A·cm²@1.65 V的工业级电流密度下具有优异的稳定性。原位衰减全反射表面增强红外吸收光谱(ATR - SEIRAS)和原位电化学阻抗谱表明,这种卓越的产氢性能(超过了先前报道的Pt/C催化剂)归因于WC诱导水离解以及氢从WC向Ru表面溢流的杰出能力。在析氢反应过程中,刚性的界面水网络在碱性条件下对析氢反应效率产生负面影响。WC位点破坏了这种刚性结构,促进了活化氢(H)与WC位点之间的接触。随后,H迁移到Ru表面,在那里发生氢重组以产生H₂。这项工作为在原子尺度构建耦合催化剂以促进析氢电催化开辟了一条新途径。