Lebovic Jordan, Trudeau Maxwell, Charalambous Lefko T, Venkat Nitya, Gallina Jason, Goldstein Jeffrey A
Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, NY.
Department of Orthopedics, University of Connecticut, Storrs, CT.
Clin Spine Surg. 2025 Jul 1;38(6):E295-E299. doi: 10.1097/BSD.0000000000001724. Epub 2024 Oct 31.
STUDY DESIGN: Retrospective cohort study. OBJECTIVE: The purpose of this study is to determine the utility of advanced imaging to confirm the placement of robotic pedicle screws. SUMMARY OF BACKGROUND DATA: With increasing robotic adoption, certain institutions and surgeons have developed protocols for obtaining 3D intraoperative imaging after robotic pedicle screw placement to ensure proper hardware placement. No studies have assessed the utility of these protocols relative to the potential risks of increased radiation exposure and operative time. The purpose of this study is to determine if we should be obtaining advanced imaging to confirm the placement of robotic pedicle screws. METHODS: This is a single institution retrospective cohort study of patients from May 2022 to July 2023 who underwent lumbar spinal fusion by a high-volume orthopedic spine surgeon at a level 1 metropolitan hospital. All cases used combined robotics and navigation systems for pedicle screw placement and intraoperative 3D imaging for evaluation of screw position. Pedicle screw accuracy was assessed using the Gertzbein and Robbins system (GRS). Acceptable pedicle screw position was defined as GRS A or B. RESULTS: Seventy patients with 354 robotically placed pedicle screws were assessed with intraoperative 3D fluoroscopy. All pedicle screws were placed in either a GRS type A or type B position. Three hundred fifty-one were placed in a GRS A classification (99.2%, 351/354), and 3 were placed in a GRS B classification (0.08% 3/354). No patients had screw-related complications. The average radiation dosage of 3D imaging was 289.7±164.6 mGy. CONCLUSION: The robotic system places pedicle screws accurately without 3D intraoperative imaging. Given the increased radiation and operative time associated with 3D imaging protocols 3D imaging scans should only be obtained in cases with heightened clinical concern. LEVEL OF EVIDENCE: Level IV.
研究设计:回顾性队列研究。 目的:本研究旨在确定先进成像技术在确认机器人椎弓根螺钉置入位置方面的效用。 背景数据总结:随着机器人技术应用的增加,某些机构和外科医生已制定方案,在机器人椎弓根螺钉置入后获取术中三维成像,以确保硬件正确置入。尚无研究评估这些方案相对于辐射暴露增加和手术时间延长等潜在风险的效用。本研究的目的是确定我们是否应该获取先进成像来确认机器人椎弓根螺钉的置入位置。 方法:这是一项单机构回顾性队列研究,研究对象为2022年5月至2023年7月在一家一级大都市医院由一位高手术量的骨科脊柱外科医生进行腰椎融合手术的患者。所有病例均使用机器人与导航系统相结合的方式进行椎弓根螺钉置入,并采用术中三维成像评估螺钉位置。使用Gertzbein和Robbins系统(GRS)评估椎弓根螺钉的准确性。可接受的椎弓根螺钉位置定义为GRS A或B。 结果:对70例置入354枚机器人椎弓根螺钉的患者进行了术中三维透视评估。所有椎弓根螺钉均置于GRS A型或B型位置。351枚置于GRS A级分类(99.2%,351/354),3枚置于GRS B级分类(0.08%,3/354)。没有患者出现与螺钉相关的并发症。三维成像的平均辐射剂量为289.7±164.6毫戈瑞。 结论:机器人系统在不进行术中三维成像的情况下能够准确置入椎弓根螺钉。鉴于与三维成像方案相关的辐射增加和手术时间延长,仅在临床关注度较高的病例中才应进行三维成像扫描。 证据级别:四级。
Clin Spine Surg. 2023-12-1