Suppr超能文献

解读Ce到Ce的演化:来自Ce N边X射线拉曼散射光谱的见解。

Deciphering the Ce to Ce Evolution: Insight from X-ray Raman Scattering Spectroscopy at Ce N Edges.

作者信息

Das Soumya K, Longo Alessandro, Bianchi Eugenio, Bordenca Claudio V, Sahle Christoph J, Pia Casaletto Maria, Mirone Alessandro, Giannici Francesco

机构信息

European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble, F-38000, France.

Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052, Zwijnaarde, Belgium.

出版信息

Chemphyschem. 2025 Feb 1;26(3):e202400742. doi: 10.1002/cphc.202400742. Epub 2024 Dec 16.

Abstract

Cerium oxide, or ceria, (CeO) is one of the most studied materials for its wide range of applications in heterogeneous catalysis and energy conversion technologies. The key feature of ceria is the remarkable oxygen storage capacity linked to the switch between Ce and Ce states, in turn creating oxygen vacancies. Changes in the electronic structure occur with oxygen removal from the lattice. Accordingly, the two valence electrons can be accommodated by the reduction of support cations where the electrons can be localized in empty f states of Ce ions nearby due to small polaron hopping resulting in the formation of Ce. Quantifying the different oxidation states in situ is crucial to understand and model the reaction mechanism. Beside the different techniques that have been used to quantify Ce and Ce states, we discuss the use of X-ray Raman Scattering (XRS) spectroscopy as an alternative method. In particular, we show that XRS can observe the oxidation state changes of cerium directly in the bulk of the materials under realistic environmental conditions. The Hilbert++ code is used to simulate the XRS spectra and quantify accurately the Ce and Ce content. These results are compared to those obtained from in situ X-ray Diffraction (XRD) collected in parallel and the differences arising from the two different probes are discussed.

摘要

氧化铈,即二氧化铈(CeO₂),因其在多相催化和能量转换技术中的广泛应用而成为研究最多的材料之一。二氧化铈的关键特性是与Ce³⁺和Ce⁴⁺状态之间的转换相关的显著储氧能力,进而产生氧空位。随着晶格中氧的去除,电子结构会发生变化。因此,两个价电子可以通过载体阳离子的还原而被容纳,由于小极化子跳跃,电子可以定域在附近Ce离子的空f态中,从而形成Ce³⁺。原位定量不同的氧化态对于理解和模拟反应机理至关重要。除了用于定量Ce³⁺和Ce⁴⁺状态的不同技术外,我们还讨论了使用X射线拉曼散射(XRS)光谱作为一种替代方法。特别是,我们表明XRS可以在实际环境条件下直接观察材料本体中铈的氧化态变化。使用Hilbert++代码来模拟XRS光谱并准确量化Ce³⁺和Ce⁴⁺的含量。将这些结果与通过并行收集的原位X射线衍射(XRD)获得的结果进行比较,并讨论两种不同探针产生的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba8c/11793262/2cbde65d9ace/CPHC-26-e202400742-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验