Suppr超能文献

一种改进的框架,用于从异质农业气候区的 NDVI 时间序列中映射和评估种植模式和作物日历的动态。

An improved framework for mapping and assessment of dynamics in cropping pattern and crop calendar from NDVI time series across a heterogeneous agro-climatic region.

机构信息

Hydraulics and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai, 600036, India.

Water Resource Group, National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad, 500001, India.

出版信息

Environ Monit Assess. 2024 Oct 31;196(11):1141. doi: 10.1007/s10661-024-13270-1.

Abstract

The absence of spatial and temporal cropping information in semi-arid regions poses a significant challenge in assessing the dynamics of agricultural systems at river basin scales. Satellite remote sensing provides qualitative and quantitative information to derive vegetation dynamics over extensive areas of inherent complexities due to limitations in the availability of field data and the diverse nature of agricultural cropping practices. Utilizing phenological information derived from MODIS Normalized Difference Vegetation Index (NDVI) time series data from 2003-2004 to 2021-2022, this study derives major crop types, and cropping calendar (sowing, maturity, and harvest dates) for each season and year at 250-m resolution. This study introduces an integrated function-fitting model based on the Fast Fourier Transform (FFT) and a Lagrangian 3-point derivative-based approach to extract phenological events from the NDVI time series automatically. The derived phenological information is used in a hybrid crop classification algorithm that combines a rule-based decision tree approach (using the phenological events/dates) and a random forest classifier (using the phenological metrics) to generate the classified crop map at a river basin scale for multiple seasons and years. The implemented approach successfully captured sowing and harvesting dates for every crop growing season over 19 years, with an RMSE of 9 days, as observed with the available field survey data from 2015 to 2021. The classification results from this hybrid approach demonstrate an overall 82% accuracy. The proposed method shows a substantial improvement in cropping area estimation with a 60% reduction in MAE and RMSE compared to the existing algorithm. From the long time series of derived seasonal crop data (19-year analysis period), the influence of monsoonal activities and shifts on the spatial and temporal dynamics of sowing time and cropping patterns are assessed for a large river basin, demonstrating the utility of this continuous crop calendar. Further, an extensive analysis of results highlights farmers' adaptive strategies in response to dry and wet years, providing foundational insights for future studies on assessing the impacts of climate change. Hence, the hybrid framework adopted in this study for deriving a continuous crop calendar holds immense relevance for parameterizing and utilizing such information for developing river basin scale hydrologic and crop growth models for water resources planning and assessment.

摘要

在半干旱地区,缺乏时空作物信息,给评估流域尺度农业系统动态带来了重大挑战。卫星遥感提供了定性和定量信息,可用于推导由于实地数据可用性有限和农业种植方式多样而导致的广泛区域内植被动态。本研究利用 2003-2004 年至 2021-2022 年 MODIS 归一化差异植被指数 (NDVI) 时间序列数据中的物候信息,以 250 米的分辨率推导出每个季节和年份的主要作物类型和种植日历(播种、成熟和收获日期)。本研究引入了一种基于快速傅里叶变换 (FFT) 和拉格朗日三点导数的集成函数拟合模型,用于自动从 NDVI 时间序列中提取物候事件。所推导的物候信息用于混合作物分类算法,该算法结合了基于规则的决策树方法(使用物候事件/日期)和随机森林分类器(使用物候指标),以生成流域尺度多个季节和年份的分类作物图。该方法成功地捕获了 19 年中每个作物生长季节的播种和收获日期,与 2015 年至 2021 年可用的实地调查数据相比,均方根误差为 9 天。该混合方法的分类结果显示总体准确率为 82%。与现有算法相比,该方法的作物面积估算误差降低了 60%,均方根误差降低了 60%,这表明该方法具有很大的改进。从推导的季节性作物数据的长时间序列(19 年分析期)中,评估了季风活动和转变对播种时间和种植模式的时空动态的影响,为大流域提供了这种连续作物日历的实用性。此外,对结果的广泛分析强调了农民对干、湿年的适应策略,为未来评估气候变化影响的研究提供了基础见解。因此,本研究中采用的推导连续作物日历的混合框架对于为流域尺度水文和作物生长模型提供参数化和利用此类信息来进行水资源规划和评估具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验