Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.
Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America.
PLoS Biol. 2024 Oct 31;22(10):e3002650. doi: 10.1371/journal.pbio.3002650. eCollection 2024 Oct.
Aberrant aggregation of α-Synuclein is the pathological hallmark of a set of neurodegenerative diseases termed synucleinopathies. Recent advances in cryo-electron microscopy have led to the structural determination of the first synucleinopathy-derived α-Synuclein fibrils, which contain a non-proteinaceous, "mystery density" at the core of the protofilaments, hypothesized to be highly negatively charged. Guided by previous studies that demonstrated that polyphosphate (polyP), a universally conserved polyanion, significantly accelerates α-Synuclein fibril formation, we conducted blind docking and molecular dynamics simulation experiments to model the polyP binding site in α-Synuclein fibrils. Here, we demonstrate that our models uniformly place polyP into the lysine-rich pocket, which coordinates the mystery density in patient-derived fibrils. Subsequent in vitro studies and experiments in cells revealed that substitution of the 2 critical lysine residues K43 and K45 with alanine residues leads to a loss of all previously reported effects of polyP binding on α-Synuclein, including stimulation of fibril formation, change in filament conformation and stability as well as alleviation of cytotoxicity. In summary, our study demonstrates that polyP fits the unknown electron density present in in vivo α-Synuclein fibrils and suggests that polyP exerts its functions by neutralizing charge repulsion between neighboring lysine residues.
α-突触核蛋白的异常聚集是一组被称为突触核蛋白病的神经退行性疾病的病理标志。最近,冷冻电子显微镜技术的进步导致了首个突触核蛋白病衍生的α-突触核蛋白原纤维的结构测定,其中包含原纤维核心处的非蛋白“神秘密度”,据推测其带高度负电荷。先前的研究表明,多磷酸盐(polyP),一种普遍存在的多阴离子,能显著加速α-突触核蛋白原纤维的形成,受此启发,我们进行了盲目对接和分子动力学模拟实验,以模拟α-突触核蛋白原纤维中的 polyP 结合位点。在这里,我们证明我们的模型将 polyP 均匀地放置在富含赖氨酸的口袋中,该口袋与患者来源的原纤维中的神秘密度相协调。随后的体外研究和细胞实验表明,用丙氨酸取代 2 个关键的赖氨酸残基 K43 和 K45 会导致 polyP 结合对 α-突触核蛋白的所有先前报道的影响丧失,包括对原纤维形成的刺激、纤维构象和稳定性的改变以及细胞毒性的减轻。总之,我们的研究表明,polyP 适合体内 α-突触核蛋白原纤维中存在的未知电子密度,并表明 polyP 通过中和相邻赖氨酸残基之间的电荷排斥来发挥其功能。