Suppr超能文献

人工智能辅助的超大规模虚拟筛选鉴定出用于治疗目的的胆碱乙酰转移酶潜在抑制剂。

AI-Enabled Ultra-large Virtual Screening Identifies Potential Inhibitors of Choline Acetyltransferase for Theranostic Purposes.

机构信息

Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India.

Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm, Sweden.

出版信息

ACS Chem Neurosci. 2024 Nov 20;15(22):4156-4170. doi: 10.1021/acschemneuro.4c00361. Epub 2024 Oct 31.

Abstract

Alzheimer's disease (AD) and related dementias are among the primary neurological disorders and call for the urgent need for early-stage diagnosis to gain an upper edge in therapeutic intervention and increase the overall success rate. Choline acetyltransferase (ChAT) is the key acetylcholine (ACh) biosynthesizing enzyme and a legitimate target for the development of biomarkers for early-stage diagnosis and monitoring of therapeutic responses. It is also a theranostic target for tackling colon and lung cancers, where overexpression of non-neuronal ChAT leads to the production of acetylcholine, which acts as an autocrine growth factor for cancer cells. Theranostics is a hybrid of diagnostics and therapeutics that can be used to locate cancer cells using radiotracers and kill them without affecting other healthy tissues. Traditional virtual screening protocols have a lot of limitations; given the current rate of chemical database expansion exceeding billions, much faster screening protocols are required. Deep docking (DD) is one such platform that leverages the power of deep neural network (DNN)-based virtual screening, empowering researchers to dock billions of molecules in a speedy, yet explicit manner. Here, we have screened 1.3 billion compounds library from the ZINC20 database, identifying the best-performing hits. With each iteration run where the first iteration gave ∼116 million hits, the second iteration gave ∼3.7 million hits, and the final third iteration gave 168,447 hits from which further refinement gave us the top 5 compounds as potential ChAT inhibitors. The discovery of novel ChAT inhibitors will enable researchers to develop new probes that can be used as novel theranostic agents against cancer and as early-stage diagnostics for the onset of AD, for timely therapeutic intervention to halt the further progression of AD.

摘要

阿尔茨海默病(AD)和相关痴呆症是主要的神经退行性疾病之一,因此迫切需要早期诊断,以在治疗干预中占据优势,并提高整体成功率。胆碱乙酰转移酶(ChAT)是乙酰胆碱(ACh)生物合成的关键酶,也是开发早期诊断和监测治疗反应的生物标志物的合法靶点。它也是治疗结肠癌和肺癌的治疗靶点,在这些癌症中,非神经元 ChAT 的过度表达导致乙酰胆碱的产生,乙酰胆碱作为癌细胞的自分泌生长因子。治疗学是诊断学和治疗学的结合,可以使用放射性示踪剂定位癌细胞,并在不影响其他健康组织的情况下杀死它们。传统的虚拟筛选方案有很多局限性;鉴于目前化学数据库的扩展速度超过了数十亿,需要更快的筛选方案。深度对接(DD)就是这样一个平台,它利用基于深度神经网络(DNN)的虚拟筛选的强大功能,使研究人员能够快速而明确地对接数十亿个分子。在这里,我们从 ZINC20 数据库中筛选了 13 亿个化合物库,确定了表现最好的命中物。每次迭代运行时,第一次迭代产生了约 1.16 亿个命中物,第二次迭代产生了约 370 万个命中物,第三次迭代最终产生了 168447 个命中物,进一步的细化得到了前 5 个化合物作为潜在的 ChAT 抑制剂。发现新型 ChAT 抑制剂将使研究人员能够开发新的探针,这些探针可用作针对癌症的新型治疗学和早期诊断 AD 的试剂,以便及时进行治疗干预,阻止 AD 的进一步进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验