Coutinho Ana L, Hom Kellie, Polli James E
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States.
Mol Pharm. 2024 Dec 2;21(12):6153-6165. doi: 10.1021/acs.molpharmaceut.4c00359. Epub 2024 Nov 1.
Amorphous solid dispersions (ASDs) function in part via a "parachute effect", i.e., polymer-enabled prolonged drug supersaturation, presumably through drug-polymer interactions in the liquid state. We aim to expand the utility of liquid state nuclear magnetic resonance (HNMR) to streamline polymer selection for ASDs. Our hypothesis is that strong molecular interactions between polymer and drug in HNMR anticipate reduced precipitation kinetics in supersaturation studies. For three drug-polymer pairs (i.e., etravirine with each HPMC, HPMCAS-M, and PVP-VA), HNMR findings were compared to more common supersaturation studies. Drug-polymer interactions were assessed by saturation transfer difference NMR (STD-NMR) and relaxation time. 2D-H NOESY experiments were also performed. Supersaturation studies involved precipitation inhibition using the solvent-shift methodology. The results from STD-NMR and relaxation time indicate etravirine bound preferably to HPMCAS-M > HPMC ≫ PVP-VA. STD-NMR and relaxation time yielded insight into which fragments of etravirine structure bind with HPMCAS-M and HPMC. The strong interactions from STD-NMR and relaxation time changes indicated that HPMCAS-M and HPMC, but not PVP-VA, are suitable polymers to maintain etravirine supersaturation and inhibit drug precipitation. 2D-H NOESY results corroborate the findings of STD-NMR and relaxation time, showing that etravirine interacts preferably to HPMCAS-M than to PVP-VA. Supersaturation studies using solvent-shift technique corroborated our hypothesis as predissolved HPMCAS-M and HPMC, but to a less extent PVP-VA, markedly promoted etravirine supersaturation and inhibited drug precipitation. Supersaturation studies agreed with STD-NMR and relaxation time predictions, as HPMC and HPMCAS-M maintained etravirine in solution for longer time than PVP-VA. The results show promise of HNMR to streamline polymer selection in a nondestructive and resource sparing fashion for subsequent ASD development.
无定形固体分散体(ASDs)部分通过“降落伞效应”起作用,即聚合物使药物超饱和状态得以延长,推测是通过液态下的药物 - 聚合物相互作用实现的。我们旨在扩展液态核磁共振(HNMR)的应用,以简化ASDs聚合物的选择。我们的假设是,HNMR中聚合物与药物之间的强分子相互作用预示着在超饱和研究中沉淀动力学降低。对于三对药物 - 聚合物组合(即依曲韦林与每种羟丙甲纤维素、醋酸羟丙甲纤维素琥珀酸酯和聚乙烯吡咯烷酮醋酸乙烯酯),将HNMR结果与更常见的超饱和研究进行了比较。通过饱和转移差核磁共振(STD - NMR)和弛豫时间评估药物 - 聚合物相互作用。还进行了二维异核单量子相干谱(2D - H NOESY)实验。超饱和研究涉及使用溶剂转移方法抑制沉淀。STD - NMR和弛豫时间的结果表明依曲韦林与醋酸羟丙甲纤维素琥珀酸酯的结合优先于羟丙甲纤维素≫聚乙烯吡咯烷酮醋酸乙烯酯。STD - NMR和弛豫时间揭示了依曲韦林结构的哪些片段与醋酸羟丙甲纤维素琥珀酸酯和羟丙甲纤维素结合。STD - NMR和弛豫时间变化产生的强相互作用表明,醋酸羟丙甲纤维素琥珀酸酯和羟丙甲纤维素,而非聚乙烯吡咯烷酮醋酸乙烯酯,是维持依曲韦林超饱和状态并抑制药物沉淀的合适聚合物。二维异核单量子相干谱结果证实了STD - NMR和弛豫时间的发现,表明依曲韦林与醋酸羟丙甲纤维素琥珀酸酯的相互作用优于与聚乙烯吡咯烷酮醋酸乙烯酯的相互作用。使用溶剂转移技术的超饱和研究证实了我们的假设,因为预溶解的醋酸羟丙甲纤维素琥珀酸酯和羟丙甲纤维素,但程度较小的聚乙烯吡咯烷酮醋酸乙烯酯,显著促进了依曲韦林的超饱和并抑制了药物沉淀。超饱和研究与STD - NMR和弛豫时间预测一致,因为羟丙甲纤维素和醋酸羟丙甲纤维素琥珀酸酯使依曲韦林在溶液中保持的时间比聚乙烯吡咯烷酮醋酸乙烯酯更长。结果显示HNMR有望以无损且节省资源的方式简化聚合物选择,用于后续的ASD开发。