Wu Zhou, Peerless Benjamin, Wang Panpan, Schuhmann Wolfgang, Dehnen Stefanie
Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
JACS Au. 2024 Sep 25;4(10):3788-3799. doi: 10.1021/jacsau.4c00375. eCollection 2024 Oct 28.
As a means of tuning the electronic properties of tin-chalcogenide-based compounds, we present a strategy for the compositional and structural expansion of selenido stannate frameworks under mild conditions by introducing Cu ions into binary anionic Sn/Se aggregates in ionothermal reactions. The variable coordination modes of Cu-contrasting with tetrahedral {SnSe} or trigonal bipyramidal {SnSe} units-and corresponding expansion toward ternary Cu/Sn/Se substructures helped to add another degree of freedom to the nanoarchitectures. As desired, the variation of the structural features was accompanied by concomitant changes of the physical properties. Upon treatment of alkali metal salts of the [SnSe] anion at slightly elevated temperatures (120 or 150 °C) in ionic liquids, we isolated a series of compounds comprising ternary or quaternary cluster molecules or networks of cluster units, (CCIm)Li[CuSnSe] (), (CCIm)[CuSnSe] (), (CCIm)[CuSnSe] (), and (CCIm)[CuSnSeF]·(CCIm)[BF] (; CCIm = 1,3-diethyl-imidazolium, CCIm = 1-ethyl-3-methyl-imidazolium), which were investigated in terms of their optical gaps and photocurrent conversion properties. As illustrated by the synthesis and characterization of an additional salt that does not include Cu, {(CCIm)[SnSe]}·{(CCIm)[BF]} (), the significant role of Cu in this system was shown to be 3-fold: (a) structural expansion, (b) narrowing of the optical gap, and (c) photocurrent enhancement. By this three-in-one effect, the work offers an in-depth understanding of chalcogenido metalate chemistry with atomic precision.
作为一种调节锡硫属化物基化合物电子性质的方法,我们提出了一种策略,即在温和条件下,通过在离子热反应中将铜离子引入二元阴离子Sn/Se聚集体中,实现硒锡酸盐框架的组成和结构扩展。铜的可变配位模式(与四面体{SnSe}或三角双锥{SnSe}单元形成对比)以及向三元Cu/Sn/Se子结构的相应扩展,有助于为纳米结构增加另一个自由度。如所期望的,结构特征的变化伴随着物理性质的相应变化。在离子液体中于略高温度(120或150°C)下处理[SnSe]阴离子的碱金属盐时,我们分离出了一系列包含三元或四元簇分子或簇单元网络的化合物,(CCIm)Li[CuSnSe] ()、(CCIm)[CuSnSe] ()、(CCIm)[CuSnSe] ()和(CCIm)[CuSnSeF]·(CCIm)[BF] (; CCIm = 1,3 - 二乙基咪唑鎓,CCIm = 1 - 乙基 - 3 - 甲基咪唑鎓),并对它们的光学带隙和光电流转换性质进行了研究。正如不含铜的另一种盐{(CCIm)[SnSe]}·{(CCIm)[BF]} ()的合成与表征所示,铜在该体系中的重要作用体现在三个方面:(a) 结构扩展,(b) 光学带隙变窄,以及(c) 光电流增强。通过这种三合一效应,这项工作提供了对硫属化物金属酸盐化学的原子精度的深入理解。