Suppr超能文献

GPTON:通过本体叙述增强的生成式预训练变换器,用于生物数据的准确注释。

GPTON: Generative Pre-trained Transformers enhanced with Ontology Narration for accurate annotation of biological data.

作者信息

Li Rongbin, Chen Wenbo, Li Jinbo, Xing Hanwen, Xu Hua, Li Zhao, Zheng W Jim

出版信息

ArXiv. 2024 Oct 17:arXiv:2410.10899v2.

Abstract

By leveraging GPT-4 for ontology narration, we developed GPTON to infuse structured knowledge into LLMs through verbalized ontology terms, achieving accurate text and ontology annotations for over 68% of gene sets in the top five predictions. Manual evaluations confirm GPTON's robustness, highlighting its potential to harness LLMs and structured knowledge to significantly advance biomedical research beyond gene set annotation.

摘要

通过利用GPT-4进行本体叙述,我们开发了GPTON,通过将本体术语转化为语言,将结构化知识注入到语言模型中,在前五大预测中,超过68%的基因集实现了准确的文本和本体注释。人工评估证实了GPTON的稳健性,突出了其利用语言模型和结构化知识显著推进生物医学研究(超越基因集注释)的潜力。

相似文献

3
A step-by-step method for cultural annotation by LLMs.
Front Artif Intell. 2024 May 1;7:1365508. doi: 10.3389/frai.2024.1365508. eCollection 2024.
5
Mining the Gene Wiki for functional genomic knowledge.
BMC Genomics. 2011 Dec 13;12:603. doi: 10.1186/1471-2164-12-603.
6
Leveraging Generative AI to Accelerate Biocuration of Medical Actions for Rare Disease.
medRxiv. 2024 Aug 22:2024.08.22.24310814. doi: 10.1101/2024.08.22.24310814.
8
Relation extraction using large language models: a case study on acupuncture point locations.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2622-2631. doi: 10.1093/jamia/ocae233.
10
Harnessing large language models (LLMs) for candidate gene prioritization and selection.
J Transl Med. 2023 Oct 16;21(1):728. doi: 10.1186/s12967-023-04576-8.

引用本文的文献

1
A beginner's approach to deep learning applied to VS and MD techniques.
J Cheminform. 2025 Apr 8;17(1):47. doi: 10.1186/s13321-025-00985-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验