文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于大语言模型的关系抽取研究:以穴位定位为例。

Relation extraction using large language models: a case study on acupuncture point locations.

机构信息

McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States.

Department of Biomedical Informatics and Data Science, School of Medicine, Yale University, New Haven, CT 06510, United States.

出版信息

J Am Med Inform Assoc. 2024 Nov 1;31(11):2622-2631. doi: 10.1093/jamia/ocae233.


DOI:10.1093/jamia/ocae233
PMID:39208311
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11491641/
Abstract

OBJECTIVE: In acupuncture therapy, the accurate location of acupoints is essential for its effectiveness. The advanced language understanding capabilities of large language models (LLMs) like Generative Pre-trained Transformers (GPTs) and Llama present a significant opportunity for extracting relations related to acupoint locations from textual knowledge sources. This study aims to explore the performance of LLMs in extracting acupoint-related location relations and assess the impact of fine-tuning on GPT's performance. MATERIALS AND METHODS: We utilized the World Health Organization Standard Acupuncture Point Locations in the Western Pacific Region (WHO Standard) as our corpus, which consists of descriptions of 361 acupoints. Five types of relations ("direction_of", "distance_of", "part_of", "near_acupoint", and "located_near") (n = 3174) between acupoints were annotated. Four models were compared: pre-trained GPT-3.5, fine-tuned GPT-3.5, pre-trained GPT-4, as well as pretrained Llama 3. Performance metrics included micro-average exact match precision, recall, and F1 scores. RESULTS: Our results demonstrate that fine-tuned GPT-3.5 consistently outperformed other models in F1 scores across all relation types. Overall, it achieved the highest micro-average F1 score of 0.92. DISCUSSION: The superior performance of the fine-tuned GPT-3.5 model, as shown by its F1 scores, underscores the importance of domain-specific fine-tuning in enhancing relation extraction capabilities for acupuncture-related tasks. In light of the findings from this study, it offers valuable insights into leveraging LLMs for developing clinical decision support and creating educational modules in acupuncture. CONCLUSION: This study underscores the effectiveness of LLMs like GPT and Llama in extracting relations related to acupoint locations, with implications for accurately modeling acupuncture knowledge and promoting standard implementation in acupuncture training and practice. The findings also contribute to advancing informatics applications in traditional and complementary medicine, showcasing the potential of LLMs in natural language processing.

摘要

目的:在针灸治疗中,穴位的准确定位对于其疗效至关重要。大型语言模型(如生成式预训练转换器(GPT)和 llama)具有先进的语言理解能力,为从文本知识源中提取与穴位位置相关的关系提供了重要机会。本研究旨在探讨大型语言模型在提取穴位相关位置关系方面的性能,并评估微调对 GPT 性能的影响。

材料和方法:我们使用世界卫生组织西太平洋地区标准针灸穴位位置(WHO 标准)作为语料库,其中包含 361 个穴位的描述。五种穴位之间的关系(“方向”、“距离”、“部分”、“近穴位”和“位于附近”)(n=3174)进行了标注。比较了四个模型:预训练的 GPT-3.5、微调的 GPT-3.5、预训练的 GPT-4 和预训练的 llama 3。性能指标包括微平均精确匹配精度、召回率和 F1 分数。

结果:我们的结果表明,微调的 GPT-3.5 在所有关系类型的 F1 分数上始终优于其他模型。总体而言,它达到了 0.92 的最高微平均 F1 分数。

讨论:微调的 GPT-3.5 模型的出色表现,体现在其 F1 分数上,突出了在针灸相关任务中增强关系提取能力的领域特定微调的重要性。鉴于本研究的结果,它为利用大型语言模型开发临床决策支持和创建针灸教育模块提供了有价值的见解。

结论:本研究强调了 GPT 和 llama 等大型语言模型在提取穴位位置相关关系方面的有效性,对准确建模针灸知识和促进针灸培训和实践中的标准实施具有重要意义。研究结果还为传统和补充医学中的信息学应用提供了新的思路,展示了大型语言模型在自然语言处理中的潜力。

相似文献

[1]
Relation extraction using large language models: a case study on acupuncture point locations.

J Am Med Inform Assoc. 2024-11-1

[2]
Using a Diverse Test Suite to Assess Large Language Models on Fast Health Care Interoperability Resources Knowledge: Comparative Analysis.

J Med Internet Res. 2025-8-12

[3]
A dataset and benchmark for hospital course summarization with adapted large language models.

J Am Med Inform Assoc. 2025-3-1

[4]
Aligning Large Language Models for Enhancing Psychiatric Interviews Through Symptom Delineation and Summarization: Pilot Study.

JMIR Form Res. 2024-10-24

[5]
A comparative study of recent large language models on generating hospital discharge summaries for lung cancer patients.

J Biomed Inform. 2025-8

[6]
BioInstruct: instruction tuning of large language models for biomedical natural language processing.

J Am Med Inform Assoc. 2024-9-1

[7]
Advancing entity recognition in biomedicine via instruction tuning of large language models.

Bioinformatics. 2024-3-29

[8]
Evaluation of Large Language Models in Tailoring Educational Content for Cancer Survivors and Their Caregivers: Quality Analysis.

JMIR Cancer. 2025-4-7

[9]
Leveraging Retrieval-Augmented Large Language Models for Dietary Recommendations With Traditional Chinese Medicine's Medicine Food Homology: Algorithm Development and Validation.

JMIR Med Inform. 2025-8-21

[10]
Extracting epilepsy-related information from unstructured clinic letters using large language models.

Epilepsia. 2025-7-10

引用本文的文献

[1]
Artificial intelligence in acupuncture: bridging traditional knowledge and precision integrative medicine.

Front Med (Lausanne). 2025-7-31

[2]
Evaluating the role of large language models in traditional Chinese medicine diagnosis and treatment recommendations.

NPJ Digit Med. 2025-7-21

[3]
Leveraging GPT-4o for Automated Extraction of Neural Projections from Scientific Literature.

AMIA Jt Summits Transl Sci Proc. 2025-6-10

[4]
A review of recent artificial intelligence for traditional medicine.

J Tradit Complement Med. 2025-2-21

[5]
Enhancing Relation Extraction for COVID-19 Vaccine Shot-Adverse Event Associations with Large Language Models.

Res Sq. 2025-3-17

[6]
VaxBot-HPV: a GPT-based chatbot for answering HPV vaccine-related questions.

JAMIA Open. 2025-2-19

[7]
VaxBot-HPV: A GPT-based Chatbot for Answering HPV Vaccine-related Questions.

Res Sq. 2024-9-11

本文引用的文献

[1]
Mapping vaccine names in clinical trials to vaccine ontology using cascaded fine-tuned domain-specific language models.

J Biomed Semantics. 2024-8-10

[2]
RefAI: a GPT-powered retrieval-augmented generative tool for biomedical literature recommendation and summarization.

J Am Med Inform Assoc. 2024-9-1

[3]
Prompt Tuning in Biomedical Relation Extraction.

J Healthc Inform Res. 2024-2-29

[4]
AE-GPT: Using Large Language Models to extract adverse events from surveillance reports-A use case with influenza vaccine adverse events.

PLoS One. 2024

[5]
Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets.

J Biomed Inform. 2024-4

[6]
A side-by-side evaluation of Llama 2 by meta with ChatGPT and its application in ophthalmology.

Eye (Lond). 2024-7

[7]
Human-like problem-solving abilities in large language models using ChatGPT.

Front Artif Intell. 2023-5-24

[8]
The immunomodulatory mechanisms for acupuncture practice.

Front Immunol. 2023

[9]
Effect of acupuncture versus usual care on sleep quality in cancer survivors with chronic pain: Secondary analysis of a randomized clinical trial.

Cancer. 2023-7-1

[10]
Somatotopic organization of autonomic reflexes by acupuncture.

Curr Opin Neurobiol. 2022-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索