Suppr超能文献

运用[具体方法]和机器学习方法从传统药用植物中鉴定用于阿尔茨海默病的乙酰胆碱酯酶抑制剂。

Identification of acetylcholinesterase inhibitors from traditional medicinal plants for Alzheimer's disease using and machine learning approaches.

作者信息

Islam Md Tarikul, Aktaruzzaman Md, Saif Ahmed, Hasan Al Riyad, Sourov Md Mehedi Hasan, Sikdar Bratati, Rehman Saira, Tabassum Afrida, Abeed-Ul-Haque Syed, Sakib Mehedi Hasan, Muhib Md Muntasir Alam, Setu Md Ali Ahasan, Tasnim Faria, Rayhan Rifat, Abdel-Daim Mohamed M, Raihan Md Obayed

机构信息

Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology Jashore 7408 Bangladesh.

Laboratory of Advanced Computational Neuroscience, Biological Research on the Brain (BRB) Jashore 7408 Bangladesh.

出版信息

RSC Adv. 2024 Oct 31;14(47):34620-34636. doi: 10.1039/d4ra05073h. eCollection 2024 Oct 29.

Abstract

Acetylcholinesterase (AChE) holds significance in Alzheimer's disease (AD), where cognitive impairment correlates with insufficient acetylcholine levels. AChE's role involves the breakdown of acetylcholine, moderating cholinergic neuron activity to prevent overstimulation and signal termination. Hence, inhibiting AChE emerges as a potential treatment avenue for AD. A library of 2500 compounds, derived from 25 traditionally used medicinal plants, was constructed using the IMPAAT database of traditional medicinal plants. The canonical SMILES of these compounds were collected and underwent virtual screening based on physicochemical properties, with subsequent determination of IC values for the screened compounds followed by analysis using machine learning (ML). Subsequently, a molecular docking study elucidated both binding affinity and interactions between these compounds and AChE. The top three compounds, exhibiting robust binding affinities, underwent MM-GBSA analysis for molecular docking validation, succeeded by pharmacokinetics and toxicity evaluations to gauge safety and efficacy. These three compounds underwent MD simulation studies to assess protein-ligand complex conformational stability. Additionally, Density Functional Theory (DFT) was employed to ascertain HOMO, LUMO, energy gap, and molecular electrostatic potential. Among 2500 compounds, physicochemical properties-based virtual screening identified 80 with good properties, of which 32 showed promising IC values. Molecular docking studies of these 32 compounds revealed various binding energies with AChE, with the best three compounds (CID 102267534, CID 15161648, CID 12441) selected for further analysis. MM-GBSA studies confirmed the promising binding energies of these three compounds, validating the molecular docking study. Further, the MD simulation studies have confirmed the structural and conformational stability of these three protein-ligand complexes. Finally, DFT calculations revealed favorable chemical features of these compounds. Thus, we can conclude that these three compounds (CID 102267534, CID 15161648, CID 12441) may inhibit the activity of AChE and can be useful as a treatment for Alzheimer's disease.

摘要

乙酰胆碱酯酶(AChE)在阿尔茨海默病(AD)中具有重要意义,其中认知障碍与乙酰胆碱水平不足相关。AChE的作用涉及乙酰胆碱的分解,调节胆碱能神经元活动以防止过度刺激并终止信号。因此,抑制AChE成为AD的一种潜在治疗途径。利用传统药用植物的IMPAAT数据库构建了一个由2500种化合物组成的文库,这些化合物源自25种传统药用植物。收集这些化合物的标准SMILES,并根据物理化学性质进行虚拟筛选,随后测定筛选化合物的IC值,然后使用机器学习(ML)进行分析。随后,分子对接研究阐明了这些化合物与AChE之间的结合亲和力和相互作用。表现出强大结合亲和力的前三种化合物进行了MM-GBSA分析以进行分子对接验证,随后进行药代动力学和毒性评估以评估安全性和有效性。这三种化合物进行了MD模拟研究,以评估蛋白质-配体复合物的构象稳定性。此外,采用密度泛函理论(DFT)来确定最高已占分子轨道(HOMO)、最低未占分子轨道(LUMO)、能隙和分子静电势。在2500种化合物中,基于物理化学性质的虚拟筛选鉴定出80种具有良好性质的化合物,其中32种显示出有前景的IC值。对这32种化合物的分子对接研究揭示了它们与AChE的各种结合能,选择了最佳的三种化合物(化合物识别号102267534、化合物识别号15161648、化合物识别号12441)进行进一步分析。MM-GBSA研究证实了这三种化合物有前景的结合能,验证了分子对接研究。此外,MD模拟研究证实了这三种蛋白质-配体复合物的结构和构象稳定性。最后,DFT计算揭示了这些化合物有利的化学特征。因此,我们可以得出结论,这三种化合物(化合物识别号102267534、化合物识别号15161648、化合物识别号12441)可能抑制AChE的活性,并可作为治疗阿尔茨海默病的药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ad/11526779/78ddc396e159/d4ra05073h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验