Suppr超能文献

Effects of verapamil on ischemia-induced changes in extracellular K+, pH, and local activation in the pig.

作者信息

Fleet W F, Johnson T A, Graebner C A, Engle C L, Gettes L S

出版信息

Circulation. 1986 Apr;73(4):837-46. doi: 10.1161/01.cir.73.4.837.

Abstract

In experimental animals, the calcium channel-blocking agents lessen the arrhythmogenic, ionic, metabolic, and electrical changes that occur during acute myocardial ischemia. To date, these effects have been studied separately, and the effects of these agents on local activation have not been correlated with ionic or metabolic effects. In open-chest, anesthetized swine, we used bipolar and ion-selective plunge electrodes to simultaneously measure ischemia-induced changes in left ventricular local activation, extracellular K+ ([K+]e), and extracellular pH (pHe). The effects of verapamil (0.2 mg/kg) on these variables were studied during a series of 10 min occlusions of the left anterior descending coronary artery. Compared with control occlusions, verapamil (1) slowed the rise in [K+]e at the center of the ischemic zone and at its lateral margin and decreased the peak [K+]e by 0.9 mM at the center (p less than .05) and by 0.1 mM at the margin (p = .10); (2) slowed the development of acidosis and decreased the peak level of acidosis beyond that expected solely as a result of serial occlusions by 0.19 pH units at the center (p less than .05) and by 0.07 pH units at the margin (p = .10); and (3) slowed the development of local activation delay and often prevented the local activation block that was observed during control occlusions. Effects on local activation became less marked at [K+]e levels greater than 9.0 mM, and the effects of verapamil on local activation were not explained solely by its effects on the local rise in [K+]e or fall in pHe. A possible mechanism for this additional effect on local activation is suggested by preliminary results showing a diminution by verapamil of ionic inhomogeneity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验