Suppr超能文献

一种基于网络的系统遗传学框架识别帕金森病中的病理生物学和药物再利用。

A network-based systems genetics framework identifies pathobiology and drug repurposing in Parkinson's disease.

作者信息

Dou Lijun, Xu Zhenxin, Xu Jielin, Su Chang, Pieper Andrew A, Zhu Xiongwei, Leverenz James B, Wang Fei, Cummings Jeffrey, Cheng Feixiong

机构信息

Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

出版信息

Res Sq. 2024 Oct 14:rs.3.rs-4869009. doi: 10.21203/rs.3.rs-4869009/v1.

Abstract

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. However, current treatments are directed at symptoms and lack ability to slow or prevent disease progression. Large-scale genome-wide association studies (GWAS) have identified numerous genomic loci associated with PD, which may guide the development of disease-modifying treatments. We presented a systems genetics approach to identify potential risk genes and repurposable drugs for PD. First, we leveraged non-coding GWAS loci effects on multiple human brain-specific quantitative trait loci (xQTLs) under the protein-protein interactome (PPI) network. We then prioritized a set of PD likely risk genes (pdRGs) by integrating five types of molecular xQTLs: expression (eQTLs), protein (pQTLs), splicing (sQTLs), methylation (meQTLs), and histone acetylation (haQTLs). We also integrated network proximity-based drug repurposing and patient electronic health record (EHR) data observations to propose potential drug candidates for PD treatments. We identified 175 pdRGs from QTL-regulated GWAS findings, such as , , , and . Multi-omics data validation revealed that the identified pdRGs are likely to be druggable targets, differentially expressed in multiple cell types and impact both the parkin ubiquitin-proteasome and alpha-synuclein (a-syn) pathways. Based on the network proximity-based drug repurposing followed by EHR data validation, we identified usage of simvastatin as being significantly associated with reduced incidence of PD (fall outcome: hazard ratio (HR) = 0.91, 95% confidence interval (CI): 0.87-0.94; for dementia outcome: HR = 0.88, 95% CI: 0.86-0.89), after adjusting for 267 covariates. Our network-based systems genetics framework identifies potential risk genes and repurposable drugs for PD and other neurodegenerative diseases if broadly applied.

摘要

帕金森病(PD)是第二常见的神经退行性疾病。然而,目前的治疗方法针对的是症状,缺乏减缓或预防疾病进展的能力。大规模全基因组关联研究(GWAS)已经确定了许多与PD相关的基因组位点,这可能会指导疾病修饰治疗的开发。我们提出了一种系统遗传学方法来识别PD的潜在风险基因和可重新利用的药物。首先,我们利用蛋白质-蛋白质相互作用组(PPI)网络下非编码GWAS位点对多种人类脑特异性定量性状位点(xQTLs)的影响。然后,我们通过整合五种类型的分子xQTLs:表达(eQTLs)、蛋白质(pQTLs)、剪接(sQTLs)、甲基化(meQTLs)和组蛋白乙酰化(haQTLs),对一组可能的PD风险基因(pdRGs)进行了优先级排序。我们还整合了基于网络邻近性的药物重新利用和患者电子健康记录(EHR)数据观察结果,以提出PD治疗的潜在候选药物。我们从QTL调控的GWAS研究结果中鉴定出175个pdRGs,如 、 、 、 和 。多组学数据验证表明,鉴定出的pdRGs可能是可成药靶点,在多种细胞类型中差异表达,并影响帕金泛素-蛋白酶体和α-突触核蛋白(a-syn)途径。基于基于网络邻近性的药物重新利用并经过EHR数据验证,在调整267个协变量后,我们发现辛伐他汀的使用与PD发病率降低显著相关(跌倒结局:风险比(HR)=0.91,95%置信区间(CI):0.87-0.94;痴呆结局:HR = 0.88,95%CI:0.86-0.89)。我们基于网络的系统遗传学框架识别出了PD以及其他神经退行性疾病的潜在风险基因和可重新利用的药物,如果广泛应用的话。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验