Casey Amanda K, Stewart Nathan M, Zaidi Naqi, Gray Hillery F, Fields Hazel A, Sakurai Masahiro, Pinzon-Arteaga Carlos A, Evers Bret M, Wu Jun, Orth Kim
bioRxiv. 2024 Oct 26:2024.10.25.620287. doi: 10.1101/2024.10.25.620287.
Bi-functional enzyme FicD regulates the endoplasmic reticulum chaperone BiP using AMPylation and deAMPylation during ER homeostasis and stress, respectively. Human FicD with an arginine-to-serine mutation disrupts FicD deAMPylation activity resulting in severe neonatal diabetes. We generated the mutation in mice to create a pre-clinical murine model for neonatal diabetes. We observed elevated BiP AMPylation levels across multiple tissues and signature markers for diabetes including glucose intolerance and reduced serum insulin levels. While the pancreas of mice appeared normal at birth, adult mice displayed disturbed pancreatic islet organization that progressed with age. mice provide a preclinical mouse model for the study of UPR associated diabetes and demonstrate the essentiality of FicD for tissue resilience.
双功能酶FicD分别在内质网稳态和应激过程中通过腺苷酸化和去腺苷酸化来调节内质网伴侣BiP。具有精氨酸到丝氨酸突变的人FicD会破坏FicD的去腺苷酸化活性,导致严重的新生儿糖尿病。我们在小鼠中产生了该突变,以创建一个用于新生儿糖尿病的临床前小鼠模型。我们观察到多个组织中BiP腺苷酸化水平升高以及糖尿病的标志性标志物,包括葡萄糖不耐受和血清胰岛素水平降低。虽然突变小鼠的胰腺在出生时看起来正常,但成年突变小鼠表现出胰岛组织紊乱,且随着年龄增长而加重。突变小鼠为研究未折叠蛋白反应相关糖尿病提供了一个临床前小鼠模型,并证明了FicD对组织恢复力的重要性。