Sehgal Raghav, Borrus Daniel, Kasamato Jessica, Armstrong Jenel F, Gonzalez John, Markov Yaroslav, Priyanka Ahana, Smith Ryan, Carreras Natàlia, Dwaraka Varun B, Higgins-Chen Albert
bioRxiv. 2024 Oct 25:2024.10.22.619522. doi: 10.1101/2024.10.22.619522.
Aging biomarkers can potentially allow researchers to rapidly monitor the impact of an aging intervention, without the need for decade-spanning trials, by acting as surrogate endpoints. Prior to testing whether aging biomarkers may be useful as surrogate endpoints, it is first necessary to determine whether they are responsive to interventions that target aging. Epigenetic clocks are aging biomarkers based on DNA methylation with prognostic value for many aging outcomes. Many individual studies are beginning to explore whether epigenetic clocks are responsive to interventions. However, the diversity of both interventions and epigenetic clocks in different studies make them difficult to compare systematically. Here, we curate TranslAGE-Response, a harmonized database of 51 public and private longitudinal interventional studies and calculate a consistent set of 16 prominent epigenetic clocks for each study, along with 95 other DNAm biomarkers that help explain changes in each clock. With this database, we discover patterns of responsiveness across a variety of interventions and DNAm biomarkers. For example, clocks trained to predict mortality or pace of aging have the strongest response across all interventions and show consistent agreement with each other, pharmacological and lifestyle interventions drive the strongest response from DNAm biomarkers, and study population and study duration are key factors in driving responsiveness of DNAm biomarkers in an intervention. Some classes of interventions such as TNF-alpha inhibitors have strong, consistent effects across multiple studies, while others such as senolytic drugs have inconsistent effects. Clocks with multiple sub-scores (i.e. "explainable clocks") provide specificity and greater mechanistic insight into responsiveness of interventions than single-score clocks. Our work can help the geroscience field design future clinical trials, by guiding the choice of interventions, specific subsets of epigenetic clocks to minimize multiple testing, study duration, study population, and sample size, with the eventual aim of determining whether epigenetic clocks can be used as surrogate endpoints.
衰老生物标志物有可能使研究人员通过充当替代终点,在无需进行长达数十年的试验的情况下,快速监测衰老干预措施的影响。在测试衰老生物标志物是否可用作替代终点之前,首先需要确定它们是否对针对衰老的干预措施有反应。表观遗传时钟是基于DNA甲基化的衰老生物标志物,对许多衰老结果具有预后价值。许多个体研究开始探索表观遗传时钟是否对干预措施有反应。然而,不同研究中干预措施和表观遗传时钟的多样性使得它们难以进行系统比较。在这里,我们精心整理了TranslAGE-Response,这是一个由51项公共和私人纵向干预研究组成的统一数据库,并为每项研究计算了一组一致的16个著名表观遗传时钟,以及95个其他有助于解释每个时钟变化的DNA甲基化生物标志物。利用这个数据库,我们发现了各种干预措施和DNA甲基化生物标志物的反应模式。例如,经过训练以预测死亡率或衰老速度的时钟在所有干预措施中反应最强,并且彼此之间显示出一致的一致性,药物和生活方式干预措施驱动DNA甲基化生物标志物产生最强的反应,而研究人群和研究持续时间是驱动干预措施中DNA甲基化生物标志物反应性的关键因素。某些类别的干预措施,如肿瘤坏死因子-α抑制剂,在多项研究中具有强烈、一致的效果,而其他一些措施,如衰老细胞溶解药物,则效果不一致。具有多个子评分的时钟(即“可解释时钟”)比单评分时钟提供了更高的特异性和对干预措施反应性的更深入机制洞察。我们的工作可以通过指导干预措施的选择、表观遗传时钟的特定子集以尽量减少多重检验、研究持续时间、研究人群和样本量,帮助老年科学领域设计未来的临床试验,最终目的是确定表观遗传时钟是否可以用作替代终点。