Suppr超能文献

利用机器学习深度神经网络势能面理解铝团簇的熔化行为。

Understanding melting behavior of aluminum clusters using machine learned deep neural network potential energy surfaces.

作者信息

Kumar Amit, Nagare Balasaheb J, Sharma Raman, Kanhere Dilip G

机构信息

Department of Physics, Himachal Pradesh University, Summer Hill, 171005 Shimla, India.

Department of Physics, University of Mumbai, Kalina Campus, Santacruz (E), 400098 Mumbai, India.

出版信息

J Chem Phys. 2024 Nov 7;161(17). doi: 10.1063/5.0228003.

Abstract

Deep neural network-based deep potentials (DP), developed by Tuo et al., have been used to compute the thermodynamic properties of free aluminum clusters with accuracy close to that of density functional theory. Although Jarrold and collaborators have reported extensive experimental measurements on the melting temperatures and heat capacities of free aluminum clusters, no reports exist for finite-temperature ab initio simulations on larger clusters (N > 55 atoms). We report the heat capacities and melting temperatures for 32 clusters in the size range of 48-342 atoms, computed using the multiple histogram technique. Extensive molecular dynamics (MD) simulations at twenty four temperatures have been performed for all the clusters. Our results are in very good agreement with the experimental melting temperatures for 19 clusters. Except for a few sizes, the interesting features in the heat capacities have been reproduced. To gain insight into the striking features reported in the experiments, we used structural and dynamical descriptors such as temperature-dependent mean squared displacements and the Lindemann index. Bimodal features observed in Al116 and the weak shoulder seen in Al52 are attributed to solid-solid structural transitions. In confirmation of the earlier reports, we observe that the behavior of the heat capacities is significantly influenced by the nature of the ground state geometries. Our findings show that the sharp drop in the melting temperature of the 56-atom cluster is a consequence of the change in the geometry of Al55. Mulliken population analysis of Al55 reveals that the charge-induced local electric field is responsible for the strong bonding between core and surface atoms, leading to the higher melting temperature. Our calculations do not support the lower melting temperature observed in experimental studies of Al69. Our results indicate that Al48 is in a liquid state above 600 K and does not support the high melting temperature reported in the experiment. It turns out that the accuracy of the DP model by Tuo et al. is not reliable for MD simulations beyond 750 K. We also report low-lying equilibrium geometries and thermodynamics of 11 larger clusters (N = 147-342) that have not been previously reported, and the melting temperatures of these clusters are in good agreement with the experimental ones.

摘要

由托等人开发的基于深度神经网络的深度势能(DP)已被用于计算自由铝团簇的热力学性质,其精度接近密度泛函理论。尽管贾罗德及其合作者已报道了关于自由铝团簇熔化温度和热容量的大量实验测量结果,但对于较大团簇(N>55个原子)的有限温度从头算模拟尚无报道。我们报告了使用多重直方图技术计算的48-342个原子尺寸范围内32个团簇的热容量和熔化温度。对所有团簇进行了在24个温度下的广泛分子动力学(MD)模拟。我们的结果与19个团簇的实验熔化温度非常吻合。除了少数尺寸外,热容量中的有趣特征也已重现。为了深入了解实验中报道的显著特征,我们使用了结构和动力学描述符,如温度相关的均方位移和林德曼指数。在Al116中观察到的双峰特征以及在Al52中看到的弱肩峰归因于固-固结构转变。为证实早期报道,我们观察到热容量的行为受到基态几何结构性质的显著影响。我们的研究结果表明,56原子团簇熔化温度的急剧下降是Al55几何结构变化的结果。对Al55的穆利肯布居分析表明,电荷诱导的局部电场是核心原子与表面原子之间强键合的原因,导致了较高的熔化温度。我们的计算不支持在Al69实验研究中观察到的较低熔化温度。我们的结果表明,Al48在600K以上处于液态,不支持实验中报道的高熔化温度。结果表明,托等人的DP模型对于超过750K的MD模拟精度不可靠。我们还报告了11个先前未报道的较大团簇(N = 147-342)的低能平衡几何结构和热力学性质,这些团簇的熔化温度与实验值吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验