Suppr超能文献

探究基于熟悉度导航的极限。

Investigating the Limits of Familiarity-Based Navigation.

作者信息

Amin Amany Azevedo, Kagioulis Efstathios, Domcsek Norbert, Nowotny Thomas, Graham Paul, Philippides Andrew

机构信息

University of Sussex, Department of Informatics.

出版信息

Artif Life. 2025 May 1;31(2):211-227. doi: 10.1162/artl_a_00459.

Abstract

Insect-inspired navigation strategies have the potential to unlock robotic navigation in power-constrained scenarios, as they can function effectively with limited computational resources. One such strategy, familiarity-based navigation, has successfully navigated a robot along routes of up to 60 m using a single-layer neural network trained with an Infomax learning rule. Given the small size of the network that effectively encodes the route, here we investigate the limits of this method, challenging it to navigate longer routes, investigating the relationship between performance, view acquisition rate and dimension, network size, and robustness to noise. Our goal is both to determine the parameters at which this method operates effectively and to explore the profile with which it fails, both to inform theories of insect navigation and to improve robotic deployments. We show that effective memorization of familiar views is possible for longer routes than previously attempted, but that this length decreases for reduced input view dimensions. We also show that the ideal view acquisition rate must be increased with route length for consistent performance. We further demonstrate that computational and memory savings may be made with equivalent performance by reducing the network size-an important consideration for applicability to small, lower-power robots-and investigate the profile of memory failure, demonstrating increased confusion across the route as it extends in length. In this extension to previous work, we also investigate the form taken by the network weights as training extends and the areas of the image on which visual familiarity-based navigation most relies. Additionally, we investigate the robustness of familiarity-based navigation to view variation caused by noise.

摘要

受昆虫启发的导航策略有潜力在功率受限的场景中实现机器人导航,因为它们可以在有限的计算资源下有效运行。一种这样的策略,即基于熟悉度的导航,使用通过信息最大化学习规则训练的单层神经网络,成功地使机器人沿着长达60米的路线导航。鉴于有效编码路线的网络规模较小,在此我们研究这种方法的局限性,挑战其导航更长路线的能力,研究性能、视图获取率与维度、网络规模以及对噪声的鲁棒性之间的关系。我们的目标既是确定该方法有效运行的参数,也是探索其失败的情况,以便为昆虫导航理论提供信息并改进机器人部署。我们表明,对于比之前尝试的更长的路线,有效记忆熟悉视图是可能的,但对于减小的输入视图维度,这个长度会减小。我们还表明,为了保持一致的性能,理想的视图获取率必须随着路线长度的增加而提高。我们进一步证明,通过减小网络规模,可以在保持等效性能的同时节省计算和内存——这对于应用于小型、低功率机器人是一个重要的考虑因素——并研究记忆失败的情况,表明随着路线长度的增加,沿途的混淆会增加。在对先前工作的扩展中,我们还研究了随着训练的进行网络权重所呈现的形式以及基于视觉熟悉度的导航最依赖的图像区域。此外,我们研究了基于熟悉度的导航对由噪声引起的视图变化的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验