Suppr超能文献

用于昆虫启发式视觉路线导航的自适应路线记忆序列

Adaptive Route Memory Sequences for Insect-Inspired Visual Route Navigation.

作者信息

Kagioulis Efstathios, Knight James, Graham Paul, Nowotny Thomas, Philippides Andrew

机构信息

Sussex AI, School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, UK.

Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.

出版信息

Biomimetics (Basel). 2024 Dec 1;9(12):731. doi: 10.3390/biomimetics9120731.

Abstract

Visual navigation is a key capability for robots and animals. Inspired by the navigational prowess of social insects, a family of insect-inspired route navigation algorithms-familiarity-based algorithms-have been developed that use stored panoramic images collected during a training route to subsequently derive directional information during route recapitulation. However, unlike the ants that inspire them, these algorithms ignore the sequence in which the training images are acquired so that all temporal information/correlation is lost. In this paper, the benefits of incorporating sequence information in familiarity-based algorithms are tested. To do this, instead of comparing a test view to all the training route images, a window of memories is used to restrict the number of comparisons that need to be made. As ants are able to visually navigate when odometric information is removed, the window position is updated via visual matching information only and not odometry. The performance of an algorithm without sequence information is compared to the performance of window methods with different fixed lengths as well as a method that adapts the window size dynamically. All algorithms were benchmarked on a simulation of an environment used for ant navigation experiments and showed that sequence information can boost performance and reduce computation. A detailed analysis of successes and failures highlights the interaction between the length of the route memory sequence and environment type and shows the benefits of an adaptive method.

摘要

视觉导航是机器人和动物的一项关键能力。受群居昆虫导航能力的启发,人们开发了一类受昆虫启发的路径导航算法——基于熟悉度的算法,该算法使用在训练路径中收集的存储全景图像,以便在路径重现过程中随后导出方向信息。然而,与启发它们的蚂蚁不同,这些算法忽略了获取训练图像的顺序,从而丢失了所有时间信息/相关性。在本文中,测试了在基于熟悉度的算法中纳入顺序信息的好处。为此,不是将测试视图与所有训练路径图像进行比较,而是使用一个记忆窗口来限制需要进行的比较数量。由于蚂蚁在去除里程计信息时仍能进行视觉导航,因此窗口位置仅通过视觉匹配信息而不是里程计来更新。将无顺序信息算法的性能与具有不同固定长度的窗口方法以及动态调整窗口大小的方法的性能进行了比较。所有算法都在用于蚂蚁导航实验的环境模拟中进行了基准测试,结果表明顺序信息可以提高性能并减少计算量。对成功和失败的详细分析突出了路径记忆序列长度与环境类型之间的相互作用,并展示了自适应方法的好处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bd2/11673725/f7c1850f6e65/biomimetics-09-00731-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验