Zhang Zhengren, Sun Qian, Qu Anjun, Yang Mengran, Li Zile
Opt Lett. 2024 Nov 1;49(21):6325-6328. doi: 10.1364/OL.538443.
Three-dimensional (3D) imaging is widely utilized in various applications, such as light detection, autonomous vehicles, and machine vision. However, conventional 3D imaging systems often rely on bulky optical components. Metasurfaces, as next-generation optical devices, possess flexible wavefront modulation capabilities and excellent combination with computer vision algorithms. Here, we propose a large field-of-view (FOV) structured light dot array projection device based on a metasurface, covering a 2π-FOV, for projecting coded point clouds in Fourier space. We explore a local bright spot gray scale matching algorithm for depth extraction, enabling 3D imaging. This algorithm simplifies the data processing flow and optimizes depth extraction and feature matching processes through a customized region gray scale comparison. As a result, it effectively reduces computational complexity and enhances tolerance to image quality fluctuations. The proposed approach provides new possibilities for developing compact and high-performance planar 3D optical imaging devices, which will drive the advancement of fields such as computer vision and artificial intelligence.
三维(3D)成像在各种应用中得到广泛应用,如光探测、自动驾驶车辆和机器视觉。然而,传统的3D成像系统通常依赖于笨重的光学组件。超表面作为下一代光学器件,具有灵活的波前调制能力,并能与计算机视觉算法完美结合。在此,我们提出一种基于超表面的大视场(FOV)结构光点阵投影装置,其覆盖2π视场,用于在傅里叶空间中投影编码点云。我们探索了一种用于深度提取的局部亮点灰度匹配算法,实现3D成像。该算法简化了数据处理流程,并通过定制区域灰度比较优化深度提取和特征匹配过程。结果,它有效降低了计算复杂度,并增强了对图像质量波动的容忍度。所提出的方法为开发紧凑且高性能的平面3D光学成像设备提供了新的可能性,这将推动计算机视觉和人工智能等领域的发展。