Suppr超能文献

白内障致病突变对 αA-晶体蛋白的影响:一种计算方法。

Influence of Cataract Causing Mutations on αA-Crystallin: A Computational Approach.

机构信息

Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India.

出版信息

Protein J. 2024 Dec;43(6):1045-1069. doi: 10.1007/s10930-024-10239-4. Epub 2024 Nov 1.

Abstract

The αA-crystallin protein plays a vital role in maintaining the refractive index and transparency of the eye lens. Significant clinical studies have emerged as the αA-crystallin is prone to aggregation, resulting in the formation of cataracts with varied etiologies due to mutations. This work aims to comprehend the structural and functional role of cataract-causing mutations in αA-crystallin, particularly at N-Terminal and α-Crystallin Domains, using in-silico approaches including molecular dynamics simulation. About 19 mutants of αA-crystallin along with native structure were simulated for 100 ns and the post-simulations analyses reveal pronounced dynamics of αA-crystallin due to the enhanced structure flexibility as its native compactness was lost and is witnessed mainly by the mutants R12L, R21L, R21Q, R54L, R65Q, R116C and R116H. It is observed that αA-crystallin discloses the NTD motions as the dominant one and the same was endorsed by the linear variation between Rg and the center-of-mass of αA-crystallin. Interestingly, such enhanced dynamics of αA-crystallin mutants associated with the structure flexibility is internally modulated by the dynamic exchange of secondary structure elements β-sheets and coils (R = 0.619) during simulation. Besides, the observed pronounced dynamics of dimer interface region (β3-L6-β4 segment) of ACD along with CTD dynamics also gains importance. Particularly, the highly dynamic mutants are also characterized by enhanced non-covalent and hydrophobic interactions which renders detrimental effects towards its stability, and favours possible protein unfolding mechanisms. Overall, this study highlights the mutation-mediated structural distortions in αA-crystallin and demands the need for further potential development of inhibitors against cataract formation.

摘要

αA-晶体蛋白在维持眼睛晶状体的折射率和透明度方面起着至关重要的作用。由于突变,αA-晶体蛋白容易聚集,导致各种病因的白内障形成,因此出现了大量重要的临床研究。这项工作旨在通过包括分子动力学模拟在内的计算方法,理解导致白内障的αA-晶体蛋白突变的结构和功能作用,特别是在 N 端和α-晶体蛋白结构域。对 19 种αA-晶体蛋白突变体及其天然结构进行了 100ns 的模拟,模拟后的分析表明,由于增强了结构的灵活性,αA-晶体蛋白的动力学明显增强,其天然的紧凑性丧失,这主要是由于突变体 R12L、R21L、R21Q、R54L、R65Q、R116C 和 R116H 引起的。观察到αA-晶体蛋白揭示了 NTD 运动是主要的运动,这同样得到了 Rg 和αA-晶体蛋白质心之间的线性变化的支持。有趣的是,这种与结构灵活性相关的αA-晶体蛋白突变体的增强动力学是由β-片层和卷曲(R=0.619)的二级结构元件在模拟过程中的动态交换内部调节的。此外,还观察到 ACD 二聚体界面区域(β3-L6-β4 段)和 CTD 动力学的显著动力学。特别是,高度动态的突变体也表现出增强的非共价和疏水相互作用,这对其稳定性产生不利影响,并有利于可能的蛋白质展开机制。总的来说,这项研究强调了突变介导的αA-晶体蛋白结构扭曲,并需要进一步开发针对白内障形成的抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验