Zhao Zhen-Zhen, Guo Peng, Pang Xiaobo, Shu Xing-Zhong
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.
Acc Chem Res. 2024 Nov 19;57(22):3356-3374. doi: 10.1021/acs.accounts.4c00614. Epub 2024 Nov 1.
ConspectusKetone-to-alkene transformations are essential in organic synthesis, and transition-metal-catalyzed cross-coupling reactions involving enol derivatives have become powerful tools to achieve this goal. While substantial progress has been made in nucleophile-electrophile reactions, recent developments in nickel-catalyzed reductive alkenylation reactions have garnered increasing attention. These methods accommodate a broad range of functional groups such as aldehyde, ketone, amide, alcohol, alkyne, heterocycles, and organotin compounds, providing an efficient strategy to access structurally diverse alkenes. This Account primarily highlights the contributions from our laboratory to this growing field while also acknowledging key contributions from other researchers.Our early efforts in this area focused on coupling radical-active substrates, such as α-chloroboronates. This method follows the conventional radical chain mechanism, resulting in facile access to valuable allylboronates. Encouraged by these promising results, we subsequently expanded the substrate scope to encompass radical-inactive compounds. By developing new strategies for controlling cross-selectivity, we enabled the coupling of Csp electrophiles (e.g., alcohols and sulfonates), Csp electrophiles (e.g., bromoalkenylboronates and acyl fluorides), and heavier group-14 electrophiles like chlorosilanes and chlorogermanes with alkenyl triflates. These advances have provided efficient synthetic routes to a wide range of valuable products, including aliphatic alkenes, enones, dienylboronates, and silicon- and germanium-containing alkenes. Notably, these methods are particularly effective for synthesizing functionalized cycloalkenes, which are traditionally challenging to obtain through conventional methods involving alkenyl halide or organometallic couplings. We have also extended the scope of enol derivatives from triflates to acetates. These compounds are among the most accessible, stable, cost-effective, and environmentally friendly reagents, while their application in cross-coupling has been hampered by low reactivity and selectivity challenges. We showcased that by the use of a Ni(I) catalyst, alkenyl acetates could undergo reductive alkylation with a broad range of alkyl bromides, yielding diverse cyclic and acyclic aliphatic alkenes.Furthermore, our work has demonstrated that reductive coupling of enol derivatives with alkenes provides a highly appealing alternative for alkene synthesis. Particularly, this approach offers opportunity to address the regioselectivity challenges encountered in conventional alkene transformations. For instance, achieving regioselective hydrocarbonation of aliphatic 1,3-dienes has been a longstanding challenge in synthetic chemistry. By using a phosphine-nitrile ligand, we developed a nickel-catalyzed reductive alkenylation of 1,3-dienes with alkenyl triflates, delivering a diverse array of 1,4-dienes with high 1,2-branch selectivity (>20:1) while preserving the geometry of the C-C double bond. Additionally, our investigations laid the foundation for enantioselective reductive alkenylation methodologies, offering new pathways for constructing enantioenriched diketones as well as complex carbo- and heterocyclic compounds. The introduced alkenyl functionality can be further diversified, enhancing molecular diversity and complexity.
概述
酮到烯烃的转化在有机合成中至关重要,涉及烯醇衍生物的过渡金属催化交叉偶联反应已成为实现这一目标的有力工具。虽然亲核试剂 - 亲电试剂反应已取得重大进展,但镍催化的还原烯基化反应的最新进展越来越受到关注。这些方法适用于广泛的官能团,如醛、酮、酰胺、醇、炔烃、杂环和有机锡化合物,为获得结构多样的烯烃提供了一种有效策略。本综述主要强调了我们实验室对这一不断发展的领域所做的贡献,同时也认可了其他研究人员的关键贡献。
我们在该领域的早期工作集中在偶联自由基活性底物,如α - 氯硼酸酯。该方法遵循传统的自由基链机制,从而能够轻松获得有价值的烯丙基硼酸酯。受这些有前景的结果鼓舞,我们随后将底物范围扩大到包括自由基非活性化合物。通过开发控制交叉选择性的新策略,我们实现了Csp亲电试剂(如醇和磺酸盐)、Csp亲电试剂(如溴代烯基硼酸酯和酰氟)以及较重的第14族亲电试剂(如氯硅烷和氯锗烷)与烯基三氟甲磺酸酯的偶联。这些进展为多种有价值的产物提供了有效的合成路线,包括脂肪族烯烃、烯酮、二烯基硼酸酯以及含硅和锗的烯烃。值得注意的是,这些方法对于合成官能化环烯烃特别有效,而传统上通过涉及烯基卤化物或有机金属偶联的常规方法来获得这些环烯烃具有挑战性。我们还将烯醇衍生物的范围从三氟甲磺酸酯扩展到乙酸酯。这些化合物是最容易获得、稳定、具有成本效益且环保的试剂之一,然而它们在交叉偶联中的应用一直受到低反应性和选择性挑战的阻碍。我们展示了通过使用Ni(I)催化剂,乙酸烯酯可以与多种烷基溴进行还原烷基化反应,生成各种环状和非环状脂肪族烯烃。
此外,我们的工作表明烯醇衍生物与烯烃的还原偶联为烯烃合成提供了一种极具吸引力的替代方法。特别是,这种方法为解决传统烯烃转化中遇到的区域选择性挑战提供了机会。例如,实现脂肪族1,3 - 二烯的区域选择性烃基化一直是合成化学中的一个长期挑战。通过使用膦 - 腈配体,我们开发了一种镍催化的1,3 - 二烯与烯基三氟甲磺酸酯的还原烯基化反应,以高1,2 - 支链选择性(>20:1)提供了多种1,4 - 二烯,同时保留了C - C双键的几何构型。此外,我们的研究为对映选择性还原烯基化方法奠定了基础,为构建对映体富集的二酮以及复杂的碳环和杂环化合物提供了新途径。引入的烯基官能团可以进一步多样化,增强分子的多样性和复杂性。