Guo Bingyan, He Shaoshuai, Li Linfa, Chen Shuang, Guo Zhicheng, Yao Mengmeng, Xiao Yutong, Liu Min, Liang Lei, Qiu Yuwei, Zhang Hong, Yao Fanglian, Li Junjie
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology (Guangzhou), Guangdong 511400, China.
J Colloid Interface Sci. 2025 Feb;679(Pt B):906-917. doi: 10.1016/j.jcis.2024.10.168. Epub 2024 Oct 28.
Conductive hydrogels have attracted widespread attention for their promising application prospects in portable and flexible electronic devices. However, hydrogels commonly suffer from problems such as solvent volatilization and freezing at low temperatures. Inspired by tissues such as human muscles, tendons, and ligaments, this study proposes a facile method to produce anisotropic conductive strong and tough eutectogels through directional freezing integrated with solvent substitution (DFSS) strategy. Eutectogels with anisotropic characteristics exhibit a highly anisotropic structure, conferring distinctive anisotropic mechanical properties and electrical conductivity. The prepared anisotropic PVA-M-DES eutectogels exhibit excellent mechanical properties (high strength of 6.31 MPa, high toughness of 20.75 MJ m, elastic modulus of 2.36 MPa, and fracture strain of 596%), high conductivity (0.17 S m), excellent anti-freezing and anti-drying properties. Environment-tolerant anisotropic PVA-M-DES eutectogels can be assembled into strain sensor and triboelectric nanogenerator to achieve real-time monitoring of various human motions and have potential applications in wearable electronics, personal healthcare, energy harvesting, and human-machine interfaces.
导电水凝胶因其在便携式和柔性电子设备中广阔的应用前景而备受关注。然而,水凝胶通常存在溶剂挥发和低温冻结等问题。受人体肌肉、肌腱和韧带等组织的启发,本研究提出了一种简便的方法,通过结合溶剂置换的定向冷冻(DFSS)策略来制备各向异性导电强韧共晶凝胶。具有各向异性特征的共晶凝胶呈现出高度各向异性的结构,赋予其独特的各向异性力学性能和导电性。所制备的各向异性PVA-M-DES共晶凝胶具有优异的力学性能(高强度6.31MPa、高韧性20.75MJ/m、弹性模量2.36MPa和断裂应变596%)、高导电性(0.17S/m)、优异的抗冻和抗干燥性能。耐环境的各向异性PVA-M-DES共晶凝胶可组装成应变传感器和摩擦纳米发电机,以实现对各种人体运动的实时监测,并在可穿戴电子设备、个人医疗保健、能量收集和人机界面等方面具有潜在应用。