Yang Zhe, Xu Xiaoyu, Zheng Hong, Li Xianduo, Chen Dongdong, Chen Yi, Tang Guanbao, Chen Hao, Guo Xuewen, Du Wenzhi, Zhang Minrui, Wang Jianning
Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China; Shandong University, Jinan, 250000, China.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Feb 15;327:125350. doi: 10.1016/j.saa.2024.125350. Epub 2024 Oct 28.
Delayed Graft Function (DGF) is a prevalent complication in kidney transplantation (KT) that significantly affects allograft function and patient prognosis. Early and precise identification of DGF is crucial for improving post-transplant outcomes. In this study, we present KGnet, a predictive model leveraging hyperspectral imaging (HSI) to assess delayed graft function status. We analyzed 72 zero-hour biopsy samples from transplanted kidneys with confirmed pathological diagnoses, capturing spectral data across a wavelength range of 400 to 1000 nm. By examining spectral signatures related to tissue oxygenation, perfusion, and metabolic states, our approach enabled the detection of subtle biochemical changes indicative of DGF risk. The preprocessed spectral data were input into KGnet, achieving a prediction accuracy of 94 % for DGF occurrence, significantly outperforming existing predictive models. This study identifies key spectral signatures associated with DGF, allowing for precise risk prediction even before clinical symptoms emerge. Leveraging HSI for early detection introduces a novel pathway for individualized post-transplant management, offering substantial potential to enhance kidney transplantation outcomes and patient quality of life. These findings highlight significant clinical and research implications for the broader application of HSI in transplant medicine.
移植肾功能延迟恢复(DGF)是肾移植(KT)中一种常见的并发症,会显著影响移植肾的功能和患者预后。早期准确识别DGF对于改善移植后结局至关重要。在本研究中,我们提出了KGnet,这是一种利用高光谱成像(HSI)评估移植肾功能延迟恢复状态的预测模型。我们分析了72份来自已确诊病理诊断的移植肾的零小时活检样本,采集了400至1000纳米波长范围内的光谱数据。通过检查与组织氧合、灌注和代谢状态相关的光谱特征,我们的方法能够检测出表明DGF风险的细微生化变化。预处理后的光谱数据输入到KGnet中,对DGF发生的预测准确率达到94%,显著优于现有的预测模型。本研究确定了与DGF相关的关键光谱特征,即使在临床症状出现之前也能进行精确的风险预测。利用HSI进行早期检测为个体化的移植后管理引入了一条新途径,具有提高肾移植结局和患者生活质量的巨大潜力。这些发现凸显了HSI在移植医学中更广泛应用的重大临床和研究意义。