Suppr超能文献

基于机器学习的整合模型提高儿童肾移植中来自已故供者移植物延迟功能的预测。

An integrated machine learning model enhances delayed graft function prediction in pediatric renal transplantation from deceased donors.

机构信息

Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510163, China.

Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.

出版信息

BMC Med. 2024 Sep 20;22(1):407. doi: 10.1186/s12916-024-03624-4.

Abstract

BACKGROUND

Kidney transplantation is the optimal renal replacement therapy for children with end-stage renal disease; however, delayed graft function (DGF), a common post-operative complication, may negatively impact the long-term outcomes of both the graft and the pediatric recipient. However, there is limited research on DGF in pediatric kidney transplant recipients. This study aims to develop a predictive model for the risk of DGF occurrence after pediatric kidney transplantation by integrating donor and recipient characteristics and utilizing machine learning algorithms, ultimately providing guidance for clinical decision-making.

METHODS

This single-center retrospective cohort study includes all recipients under 18 years of age who underwent single-donor kidney transplantation at our hospital between 2016 and 2023, along with their corresponding donors. Demographic, clinical, and laboratory examination data were collected from both donors and recipients. Univariate logistic regression models and differential analysis were employed to identify features associated with DGF. Subsequently, a risk score for predicting DGF occurrence (DGF-RS) was constructed based on machine learning combinations. Model performance was evaluated using the receiver operating characteristic curves, decision curve analysis (DCA), and other methods.

RESULTS

The study included a total of 140 pediatric kidney transplant recipients, among whom 37 (26.4%) developed DGF. Univariate analysis revealed that high-density lipoprotein cholesterol (HDLC), donor after circulatory death (DCD), warm ischemia time (WIT), cold ischemia time (CIT), gender match, and donor creatinine were significantly associated with DGF (P < 0.05). Based on these six features, the random forest model (mtry = 5, 75%p) exhibited the best predictive performance among 97 machine learning models, with the area under the curve values reaching 0.983, 1, and 0.905 for the entire cohort, training set, and validation set, respectively. This model significantly outperformed single indicators. The DCA curve confirmed the clinical utility of this model.

CONCLUSIONS

In this study, we developed a machine learning-based predictive model for DGF following pediatric kidney transplantation, termed DGF-RS, which integrates both donor and recipient characteristics. The model demonstrated excellent predictive accuracy and provides essential guidance for clinical decision-making. These findings contribute to our understanding of the pathogenesis of DGF.

摘要

背景

肾移植是儿童终末期肾病的最佳肾脏替代疗法;然而,移植物功能延迟恢复(DGF)是一种常见的术后并发症,可能会对移植物和儿童受者的长期预后产生负面影响。然而,目前针对儿童肾移植受者 DGF 的研究有限。本研究旨在通过整合供者和受者特征并利用机器学习算法,为儿童肾移植后 DGF 发生的风险建立预测模型,最终为临床决策提供指导。

方法

本单中心回顾性队列研究纳入了 2016 年至 2023 年期间在我院接受单供者肾移植的所有 18 岁以下受者及其相应供者。收集供者和受者的人口统计学、临床和实验室检查数据。采用单变量逻辑回归模型和差异分析来识别与 DGF 相关的特征。随后,基于机器学习组合构建预测 DGF 发生的风险评分(DGF-RS)。使用受试者工作特征曲线、决策曲线分析(DCA)和其他方法评估模型性能。

结果

本研究共纳入 140 例儿童肾移植受者,其中 37 例(26.4%)发生 DGF。单变量分析显示,高密度脂蛋白胆固醇(HDLC)、心脏死亡后供者(DCD)、热缺血时间(WIT)、冷缺血时间(CIT)、性别匹配和供者肌酐与 DGF 显著相关(P<0.05)。基于这六个特征,随机森林模型(mtry=5,75%p)在 97 个机器学习模型中表现出最佳预测性能,整个队列、训练集和验证集的曲线下面积分别达到 0.983、1 和 0.905。该模型显著优于单个指标。DCA 曲线证实了该模型的临床实用性。

结论

本研究建立了一种基于机器学习的儿童肾移植后 DGF 预测模型,称为 DGF-RS,该模型整合了供者和受者特征。该模型具有出色的预测准确性,为临床决策提供了重要指导。这些发现有助于我们了解 DGF 的发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b438/11415997/45d6256febae/12916_2024_3624_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验