Han Yuhang, Li Yanru, Liu Yande, Alsubaie Abdullah Saad, El-Bahy Salah M, Qiu Hua, Jiang Dawei, Wu Zijian, Ren Juanna, El-Bahy Zeinhom M, Jiang Bo, Guo Zhanhu
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, Northeast Forestry University, Harbin 150040, China.
Beijing Graphene Institute, Beijing 100095, China.
Int J Biol Macromol. 2024 Dec;282(Pt 4):137123. doi: 10.1016/j.ijbiomac.2024.137123. Epub 2024 Oct 30.
The rapid evolution of multifunctional wearable smart devices has significantly expanded their applications in human-computer interaction and motion health monitoring. Central to these devices are flexible sensors, which require high stretchability, durability, self-adhesion, and sensitivity. Biomacromolecules have attracted attention in sensor design for their biocompatibility, biodegradability, and unique mechanical properties. This study employs a "one-pot" method to integrate ionic liquids and multi-walled carbon nanotubes into a dual-network hydrogel framework, utilizing tannic acid, sodium alginate, acrylamide, and 2-acrylamido-2-methylpropane sulfonic acid. Tannic acid and sodium alginate, natural biomacromolecules, form a robust physical cross-linking network, while P(AM-AMPS) creates a chemical cross-linking network. Ionic liquids enhance carbon nanotube dispersion, resulting in a hybrid hydrogel with remarkable tensile strength (0.12 MPa), adhesive properties (0.039 MPa), and sensing performance (GF 0.12 for 40 %-100 % strain, GF 0.24 for 100 %-250 % strain). This hydrogel effectively monitors large joint movements (fingers, wrists, knees) and subtle biological activities like swallowing and vocalization. Integrating natural biomacromolecules into this composite hydrogel sensor not only enhances the functionality and biocompatibility of flexible wearable devices but also paves the way for innovations in biomedicine and bioelectronics.
多功能可穿戴智能设备的迅速发展显著扩大了它们在人机交互和运动健康监测方面的应用。这些设备的核心是柔性传感器,其需要高拉伸性、耐用性、自粘性和灵敏度。生物大分子因其生物相容性、可生物降解性和独特的机械性能而在传感器设计中受到关注。本研究采用“一锅法”将离子液体和多壁碳纳米管整合到双网络水凝胶框架中,利用了单宁酸、海藻酸钠、丙烯酰胺和2-丙烯酰胺基-2-甲基丙烷磺酸。单宁酸和海藻酸钠这两种天然生物大分子形成了一个强大的物理交联网络,而P(AM-AMPS)形成了一个化学交联网络。离子液体增强了碳纳米管的分散性,从而得到一种具有显著拉伸强度(0.12MPa)、粘附性能(0.039MPa)和传感性能(40%-100%应变时GF为0.12,100%-250%应变时GF为0.24)的混合水凝胶。这种水凝胶能有效地监测大关节运动(手指、手腕、膝盖)以及吞咽和发声等细微的生物活动。将天然生物大分子整合到这种复合水凝胶传感器中,不仅增强了柔性可穿戴设备的功能和生物相容性,还为生物医学和生物电子学的创新铺平了道路。