Suppr超能文献

通过神经嵌入进行网络社区检测。

Network community detection via neural embeddings.

作者信息

Kojaku Sadamori, Radicchi Filippo, Ahn Yong-Yeol, Fortunato Santo

机构信息

School of Systems Science and Industrial Engineering, Binghamton University, Binghamton, NY, USA.

Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.

出版信息

Nat Commun. 2024 Nov 1;15(1):9446. doi: 10.1038/s41467-024-52355-w.

Abstract

Recent advances in machine learning research have produced powerful neural graph embedding methods, which learn useful, low-dimensional vector representations of network data. These neural methods for graph embedding excel in graph machine learning tasks and are now widely adopted. However, how and why these methods work-particularly how network structure gets encoded in the embedding-remain largely unexplained. Here, we show that node2vec-shallow, linear neural network-encodes communities into separable clusters better than random partitioning down to the information-theoretic detectability limit for the stochastic block models. We show that this is due to the equivalence between the embedding learned by node2vec and the spectral embedding via the eigenvectors of the symmetric normalized Laplacian matrix. Numerical simulations demonstrate that node2vec is capable of learning communities on sparse graphs generated by the stochastic blockmodel, as well as on sparse degree-heterogeneous networks. Our results highlight the features of graph neural networks that enable them to separate communities in the embedding space.

摘要

机器学习研究的最新进展产生了强大的神经图嵌入方法,这些方法可以学习网络数据有用的低维向量表示。这些用于图嵌入的神经方法在图机器学习任务中表现出色,目前已被广泛采用。然而,这些方法如何以及为何有效——特别是网络结构如何在嵌入中进行编码——在很大程度上仍未得到解释。在这里,我们表明,对于随机块模型,node2vec(一种浅层线性神经网络)将社区编码为可分离的簇的能力优于随机划分,直至达到信息论可检测极限。我们表明,这是由于node2vec学习到的嵌入与通过对称归一化拉普拉斯矩阵的特征向量进行的谱嵌入之间的等价性。数值模拟表明,node2vec能够在由随机块模型生成的稀疏图以及稀疏度异质网络上学习社区。我们的结果突出了图神经网络在嵌入空间中分离社区的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fa/11530665/c0ee3e5997a9/41467_2024_52355_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验