Suppr超能文献

通过神经嵌入进行网络社区检测。

Network community detection via neural embeddings.

作者信息

Kojaku Sadamori, Radicchi Filippo, Ahn Yong-Yeol, Fortunato Santo

机构信息

School of Systems Science and Industrial Engineering, Binghamton University, Binghamton, NY, USA.

Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.

出版信息

Nat Commun. 2024 Nov 1;15(1):9446. doi: 10.1038/s41467-024-52355-w.

Abstract

Recent advances in machine learning research have produced powerful neural graph embedding methods, which learn useful, low-dimensional vector representations of network data. These neural methods for graph embedding excel in graph machine learning tasks and are now widely adopted. However, how and why these methods work-particularly how network structure gets encoded in the embedding-remain largely unexplained. Here, we show that node2vec-shallow, linear neural network-encodes communities into separable clusters better than random partitioning down to the information-theoretic detectability limit for the stochastic block models. We show that this is due to the equivalence between the embedding learned by node2vec and the spectral embedding via the eigenvectors of the symmetric normalized Laplacian matrix. Numerical simulations demonstrate that node2vec is capable of learning communities on sparse graphs generated by the stochastic blockmodel, as well as on sparse degree-heterogeneous networks. Our results highlight the features of graph neural networks that enable them to separate communities in the embedding space.

摘要

机器学习研究的最新进展产生了强大的神经图嵌入方法,这些方法可以学习网络数据有用的低维向量表示。这些用于图嵌入的神经方法在图机器学习任务中表现出色,目前已被广泛采用。然而,这些方法如何以及为何有效——特别是网络结构如何在嵌入中进行编码——在很大程度上仍未得到解释。在这里,我们表明,对于随机块模型,node2vec(一种浅层线性神经网络)将社区编码为可分离的簇的能力优于随机划分,直至达到信息论可检测极限。我们表明,这是由于node2vec学习到的嵌入与通过对称归一化拉普拉斯矩阵的特征向量进行的谱嵌入之间的等价性。数值模拟表明,node2vec能够在由随机块模型生成的稀疏图以及稀疏度异质网络上学习社区。我们的结果突出了图神经网络在嵌入空间中分离社区的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fa/11530665/c0ee3e5997a9/41467_2024_52355_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验