Aldwoah Khaled, Ahmad Shabir, Alqarni Faez, Younis Jihad, Hashim Hussam E, Hleili Manel
Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy.
Sci Rep. 2024 Nov 1;14(1):26315. doi: 10.1038/s41598-024-77833-5.
This work investigates the Kraenkel-Manna-Merle (KMM) system, which models the nonlinear propagation of short waves in saturated ferromagnetic materials subjected to an external magnetic field, despite the absence of electrical conductivity. The study aims to explore and derive new solitary wave solutions for this system using two distinct methodological approaches. In the first approach, the KMM system is transformed into a system of nonlinear ordinary differential equations (ODEs) via Lie group transformation. The resulting ODEs are then solved analytically using a similarity invariant approach, leading to the discovery of various types of solitary wave solutions, including bright, dark, and exponential solitons. The second approach involves applying wave and Galilean transformations to reduce the KMM system to a system of two ODEs, both with and without damping effects. This reduced system is further analyzed to investigate its bifurcation behavior, sensitivity to initial conditions, and chaotic dynamics. The analysis reveals the presence of strange multi-scroll chaotic dynamics in the presence of damping and off-boosting dynamics without damping. In addition to these approaches, the study also applies the planar dynamical theory to obtain further new soliton solutions of the KMM system. These solitons include bright, kink, dark, and periodic solutions, each of which has been visualized through 3D and 2D graphs. The results of this research provide new insights into the dynamics of the KMM system, with potential applications in magnetic data storage, magnonic devices, material science, and spintronics.
这项工作研究了克莱恩克尔 - 曼纳 - 梅尔勒(KMM)系统,该系统对处于外部磁场中的饱和铁磁材料中短波的非线性传播进行建模,尽管不存在电导率。该研究旨在使用两种不同的方法探索并推导该系统的新孤波解。在第一种方法中,通过李群变换将KMM系统转化为非线性常微分方程组(ODEs)。然后使用相似不变方法对所得的ODEs进行解析求解,从而发现各种类型的孤波解,包括亮孤子、暗孤子和指数孤子。第二种方法涉及应用波动变换和伽利略变换将KMM系统简化为一个包含或不包含阻尼效应的两个ODEs的系统。对这个简化系统进行进一步分析,以研究其分岔行为、对初始条件的敏感性和混沌动力学。分析揭示了在存在阻尼时出现奇怪的多涡卷混沌动力学,以及在不存在阻尼时出现离助推动力学。除了这些方法,该研究还应用平面动力学理论获得KMM系统的更多新孤子解。这些孤子包括亮孤子、扭结孤子、暗孤子和周期解,每个解都通过三维和二维图形进行了可视化。这项研究的结果为KMM系统的动力学提供了新的见解,在磁数据存储、磁子器件、材料科学和自旋电子学等领域具有潜在应用。