Singh Sahil, Muhommad Javed, Hassan Md Samim, Lamba Raman Singh, Jha Varsha, Yadav Priyesh, Deka Sasanka, Sapra Sameer
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India.
Small. 2025 Feb;21(8):e2408276. doi: 10.1002/smll.202408276. Epub 2024 Nov 2.
Cobalt-based chalcogenides have emerged as fascinating materials for supercapacitor applications owing to the presence of various mixed valance oxidation states in their structure along with rich electrochemical properties. However, their limited stability and cyclic performance hinder their viability for practical use in supercapacitors. Herein, a facile hot injection colloidal route is demonstrated to design MoSe-CoS nanoheterostructures (NHSs), which entails the epitaxial growth of CoS nanoparticles (NPs) over the basal planes of ultrathin MoSe nanosheets (NSs). The interfacial engineering of the basal planes of MoSe NSs with CoS NPs regulates the electronic properties and defects at the interfaces and increases the overall specific surface area and conductivity. As a result, MoSe-CoS NHSs electrode unveils a substantially higher specific capacitance of 910.5 F g at 1 A gcurrent density surpassing their individual counterparts. In addition, it demonstrates worthy solidity, retaining ≈90% of its capacitance and coulombic efficiency of 93.3% after 10,000 charge-discharge cycles at a high charge-discharge current density of 15 A g. As a proof-of-concept, coin cells are fabricated using MoSe-CoS NHSs which show 93% Coulomb efficiency and 86% capacitance retention. This study would pave the way for designing transition metal dichalcogenides (TMDs) - derived NHSs with superior capacitive properties.
由于钴基硫属化合物结构中存在各种混合价态的氧化态以及丰富的电化学性质,它们已成为用于超级电容器应用的迷人材料。然而,它们有限的稳定性和循环性能阻碍了它们在超级电容器中实际应用的可行性。在此,展示了一种简便的热注入胶体路线来设计MoSe-CoS纳米异质结构(NHSs),这需要在超薄MoSe纳米片(NSs)的基面外延生长CoS纳米颗粒(NPs)。用CoS NPs对MoSe NSs的基面进行界面工程调控了界面处的电子性质和缺陷,并增加了整体比表面积和电导率。结果,MoSe-CoS NHSs电极在1 A g电流密度下展现出高达910.5 F g的显著更高的比电容,超过了它们各自的对应物。此外,它表现出值得称赞的稳定性,在15 A g的高充放电电流密度下进行10000次充放电循环后,保留了约90%的电容和93.3%的库仑效率。作为概念验证,使用MoSe-CoS NHSs制造的硬币电池显示出93%的库仑效率和86%的电容保持率。这项研究将为设计具有优异电容性能的过渡金属二硫属化物(TMDs)衍生的NHSs铺平道路。