Zheng Chen-Yan, Qian Hai-Long, Yang Cheng, Yan Xiu-Ping
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
Small Methods. 2025 Mar;9(3):e2401120. doi: 10.1002/smtd.202401120. Epub 2024 Nov 2.
Nanochannel membranes are promising materials for enantioselective sensing. However, it is difficult to make a compromise between the selectivity and permeability in traditional nanochannel membranes. Therefore, new types of nanochannel membranes with high enantioselectivity and excellent permeability should be explored for chiral analysis. Here, asymmetric catalysis strategy is reported for interfacial polymerization synthesis of chiral covalent-organic framework (cCOF) nanochannel membrane for enantioselective sensing. Chiral phenylethylamine (S/R-PEA) and 2,4,6-triformylphloroglucinol (TP) are used to prepare chiral TP monomer. 4,4',4″-triaminotriphenylamine (TAPA) is then condensed with chiral TP to obtain cCOF nanochannel membrane via a C═N Schiff-base reaction. The molar ratio of TP to S/R-PEA is adjusted so that S/R-PEA is bound to the aldehyde only or both the aldehyde and hydroxyl groups on TP to obtain chiral-induced COF (cCOF-1) or both chiral-induced and modified COF (cCOF-2) nanochannel membrane, respectively. The prepared cCOF-2 nanochannel membrane showed two times more selectivity for limonene enantiomers than cCOF-1 nanochannel membrane. Furthermore, cCOF-2 nanochannel platform exhibited excellent sensing performance for other chiral molecules such as limonene, propanediol, methylbutyric acid, ibuprofen, and naproxen (limits of detection of 19-42 ng L, enantiomer excess of 63.6-86.3%). This work provides a promising way to develop cCOF-based nanochannel enantioselective sensor.
纳米通道膜是用于对映选择性传感的有前景的材料。然而,在传统纳米通道膜中,要在选择性和渗透性之间做出折衷是困难的。因此,应探索具有高对映选择性和优异渗透性的新型纳米通道膜用于手性分析。在此,报道了一种不对称催化策略,用于界面聚合合成用于对映选择性传感的手性共价有机框架(cCOF)纳米通道膜。使用手性苯乙胺(S/R-PEA)和2,4,6-三甲基间苯三酚(TP)制备手性TP单体。然后,4,4',4″-三氨基三苯胺(TAPA)与手性TP缩合,通过C═N席夫碱反应获得cCOF纳米通道膜。调节TP与S/R-PEA的摩尔比,使得S/R-PEA仅与TP上的醛基结合或与醛基和羟基都结合,分别获得手性诱导COF(cCOF-1)或手性诱导和修饰的COF(cCOF-2)纳米通道膜。制备的cCOF-2纳米通道膜对柠檬烯对映体的选择性是cCOF-1纳米通道膜的两倍。此外,cCOF-2纳米通道平台对其他手性分子如柠檬烯、丙二醇、甲基丁酸、布洛芬和萘普生表现出优异的传感性能(检测限为19-42 ng L,对映体过量为63.6-86.3%)。这项工作为开发基于cCOF的纳米通道对映选择性传感器提供了一条有前景的途径。