Suppr超能文献

一种用于血管内脑电记录的无导线能量传输和无线遥测解决方案。

A leadless power transfer and wireless telemetry solutions for an endovascular electrocorticography.

机构信息

School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2050, Australia.

Department of AAU Energy, Aalborg University, Aalborg, Denmark.

出版信息

J Neural Eng. 2024 Nov 12;21(6). doi: 10.1088/1741-2552/ad8dfe.

Abstract

. Endovascular brain-computer interfaces (eBCIs) offer a minimally invasive way to connect the brain to external devices, merging neuroscience, engineering, and medical technology. Currently, solutions for endovascular electrocorticography (ECoG) include a stent in the brain with sensing electrodes, a chest implant to accommodate electronic components to provide power and data telemetry, and a long (tens of centimeters) cable travel through vessels with a set of wires in between. Removing this long cable is the key to the clinical viability of eBCIS as it carries risks and limitations, especially for patients with fragile vasculature.. This work introduces a wireless and leadless telemetry and power transfer solution for ECoG. The proposed solution includes an optical telemetry module and a focused ultrasound (FUS) power transfer system. The proposed system can be miniaturised to fit in an endovascular stent, removing the need for long, intrusive cables.. The optical telemetry achieves data transmission speeds of over 2 Mbit/s, capable of supporting 41 ECoG channels at a 2 kHz sampling rate with 24-bit resolution. The FUS power transfer system delivers up to 10 mW of power to the implant through the scalp(6 mm), skull(10 mm), and subdural space(5 mm), adhering to safety limits. Testing on bovine tissue (10 mm thick bone, 7 mm thick skin) confirmed the system's efficacy.. This leadless and wireless solution eliminates the need for long cables and auxiliary implants, potentially reducing complications and enhancing the clinical applicability of eBCIs. The proposed system represents a step forward in enabling safer and more effective ECoG for a broader range of patients.

摘要

. 血管内脑机接口 (eBCIs) 提供了一种将大脑与外部设备连接的微创方式,融合了神经科学、工程学和医疗技术。目前,血管内脑电描记术 (ECoG) 的解决方案包括大脑中的带有传感电极的支架、胸部植入物以容纳电子元件来提供电源和数据遥测,以及通过血管内的长(数十厘米)电缆传输,中间有一组电线。移除这条长电缆是 eBCIs 临床可行性的关键,因为它存在风险和限制,特别是对于血管脆弱的患者。. 这项工作介绍了一种用于 ECoG 的无线和无引线遥测和功率传输解决方案。所提出的解决方案包括光学遥测模块和聚焦超声 (FUS) 功率传输系统。所提出的系统可以小型化以适应血管内支架,无需使用长而侵入性的电缆。. 光学遥测实现了超过 2 Mbit/s 的数据传输速度,能够以 2 kHz 的采样率支持 41 个 ECoG 通道,分辨率为 24 位。FUS 功率传输系统通过头皮(6 毫米)、颅骨(10 毫米)和硬脑膜下腔(5 毫米)向植入物传输高达 10 mW 的功率,符合安全限制。在牛组织(10 毫米厚的骨头,7 毫米厚的皮肤)上的测试证实了该系统的有效性。. 这种无引线和无线解决方案消除了对长电缆和辅助植入物的需求,可能会降低并发症并提高 eBCIs 的临床适用性。所提出的系统代表着在为更广泛的患者实现更安全、更有效的 ECoG 方面迈出了一步。

相似文献

3
Wireless gigabit data telemetry for large-scale neural recording.用于大规模神经记录的无线千兆数据遥测技术。
IEEE J Biomed Health Inform. 2015 May;19(3):949-57. doi: 10.1109/JBHI.2015.2416202. Epub 2015 Mar 24.
6
A power and data link for a wireless-implanted neural recording system.一种用于无线植入式神经记录系统的功率和数据链路。
IEEE Trans Biomed Eng. 2012 Nov;59(11):3255-62. doi: 10.1109/TBME.2012.2214385. Epub 2012 Aug 21.
8
Wireless technologies for closed-loop retinal prostheses.闭环视网膜假体的无线技术。
J Neural Eng. 2009 Dec;6(6):065004. doi: 10.1088/1741-2560/6/6/065004. Epub 2009 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验