Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, South Korea.
Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.
Sci Rep. 2024 Nov 2;14(1):26458. doi: 10.1038/s41598-024-78268-8.
Left ventricular (LV) global longitudinal strain (LVGLS) is versatile; however, it is difficult to obtain. We evaluated the potential of an artificial intelligence (AI)-generated electrocardiography score for LVGLS estimation (ECG-GLS score) to diagnose LV systolic dysfunction and predict prognosis of patients with heart failure (HF). A convolutional neural network-based deep-learning algorithm was trained to estimate the echocardiography-derived GLS (LVGLS). ECG-GLS score performance was evaluated using data from an acute HF registry at another tertiary hospital (n = 1186). In the validation cohort, the ECG-GLS score could identify patients with impaired LVGLS (≤ 12%) (area under the receiver-operating characteristic curve [AUROC], 0.82; sensitivity, 85%; specificity, 59%). The performance of ECG-GLS in identifying patients with an LV ejection fraction (LVEF) < 40% (AUROC, 0.85) was comparable to that of LVGLS (AUROC, 0.83) (p = 0.08). Five-year outcomes (all-cause death; composite of all-cause death and hospitalization for HF) occurred significantly more frequently in patients with low ECG-GLS scores. Low ECG-GLS score was a significant risk factor for these outcomes after adjustment for other clinical risk factors and LVEF. The ECG-GLS score demonstrated a meaningful correlation with the LVGLS and is effective in risk stratification for long-term prognosis after acute HF, possibly acting as a practical alternative to the LVGLS.
左心室(LV)整体纵向应变(LVGLS)用途广泛,但很难获得。我们评估了人工智能(AI)生成的心电图评分用于 LVGLS 估计(ECG-GLS 评分)的潜力,以诊断 LV 收缩功能障碍并预测心力衰竭(HF)患者的预后。使用另一家三级医院的急性 HF 登记处的数据来训练基于卷积神经网络的深度学习算法来估计超声心动图衍生的 GLS(LVGLS)。使用来自另一家三级医院的急性 HF 登记处的数据评估 ECG-GLS 评分的性能(n = 1186)。在验证队列中,ECG-GLS 评分可识别 LVGLS 受损的患者(≤ 12%)(受试者工作特征曲线下面积[AUROC],0.82;敏感性,85%;特异性,59%)。ECG-GLS 评分识别 LVEF<40%(AUROC,0.85)的患者的性能与 LVGLS(AUROC,0.83)相当(p = 0.08)。在调整其他临床危险因素和 LVEF 后,低 ECG-GLS 评分的患者发生 5 年结局(全因死亡;全因死亡和 HF 住院的复合结局)的频率显著更高。低 ECG-GLS 评分是这些结局的显著危险因素。ECG-GLS 评分与 LVGLS 具有有意义的相关性,并且在急性 HF 后对长期预后的风险分层有效,可能是 LVGLS 的实用替代方法。