Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangdong, China; Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China.
Department of Periodontics and Oral Medicine, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Guangdong, China.
Arch Oral Biol. 2025 Jan;169:106115. doi: 10.1016/j.archoralbio.2024.106115. Epub 2024 Oct 21.
Given their neural crest origin, gingival mesenchymal stem cells (GMSCs) possess high neurogenic potential, which makes them suitable for cell replacement therapy against neurodegenerative diseases. This study investigated whether GMSCs can be transdifferentiated into neurons in vitro using a protocol involving small molecules VCRFY (VPA, CHIR99021, Repsox, Forskolin, and Y-27632). The regulatory mechanisms of key signaling pathways were also investigated.
Neuronal induction of GMSCs was conducted using a small molecules-based protocol over 7 days, which included the evaluation of cell morphology, proliferation, expressions of neurogenic markers, and intracellular calcium oscillation. The activation of canonical the Wnt signaling pathway was assessed by examining the protein content and subcellular localization of β-catenin.
Small molecules-treated GMSCs displayed neuronal morphology and increased expression of neurogenic markers, including class III beta-tubulin (TUJ1), neuron-specific enolase (NSE), microtube-associated protein 2 (MAP2), and neurofilament medium (NFM), verified through RT-qPCR, western blotting, and immunocytochemistry. Based on the results of Fluo-4 AM calcium flux assay, small molecules-treated GMSCs exhibited enhanced electrophysiological activity. GMSC proliferation halted after 2 days of treatment. Among the small molecules, CHIR99021 exhibited the highest neuronal induction efficiency. Furthermore, activation of the Wnt/β-catenin signaling pathway augmented neuronal differentiation.
Small molecule-based cellular reprogramming can efficiently generate neurons from GMSCs, with Wnt/β-catenin signaling to play a critical role in neuronal induction.
鉴于其神经嵴起源,牙龈间充质干细胞(GMSCs)具有较高的神经发生潜能,使其适合用于神经退行性疾病的细胞替代治疗。本研究探讨了 GMSCs 是否可以通过一种涉及小分子 VCRFY(VPA、CHIR99021、Repsox、Forskolin 和 Y-27632)的方案在体外转化为神经元。还研究了关键信号通路的调节机制。
使用基于小分子的方案在 7 天内对 GMSCs 进行神经元诱导,包括评估细胞形态、增殖、神经发生标志物的表达和细胞内钙振荡。通过检查β-连环蛋白的蛋白含量和亚细胞定位来评估经典 Wnt 信号通路的激活。
小分子处理的 GMSCs 表现出神经元形态和神经发生标志物表达增加,包括 III 类β-微管蛋白(TUJ1)、神经元特异性烯醇化酶(NSE)、微管相关蛋白 2(MAP2)和神经丝中(NFM),通过 RT-qPCR、western blot 和免疫细胞化学验证。基于 Fluo-4 AM 钙通量测定的结果,小分子处理的 GMSCs 表现出增强的电生理活性。GMSC 增殖在治疗 2 天后停止。在小分子中,CHIR99021 表现出最高的神经元诱导效率。此外,Wnt/β-连环蛋白信号通路的激活增强了神经元分化。
基于小分子的细胞重编程可以有效地从 GMSCs 中产生神经元,Wnt/β-连环蛋白信号通路在神经元诱导中起着关键作用。