Suppr超能文献

Positive activation entropy of Bacillus circulans xylanase catalyzed ONPX hydrolysis: A mechanistic and engineering study.

作者信息

Zhou Xuchen, An Liaoyuan, Yang Ying, Liu Zhijun, Wang Yefei, Yao Lishan

机构信息

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.

出版信息

Int J Biol Macromol. 2024 Dec;282(Pt 4):137087. doi: 10.1016/j.ijbiomac.2024.137087. Epub 2024 Nov 1.

Abstract

Transition state (TS) stabilization by enzymes greatly accelerates catalytic reactions. For some enzymes, the TS complex has entropy higher than enzyme substrate (ES) complex. But the origin of favorable entropy remains unclear. In this work, we studied the mechanism of Bacillus Circulans xylanase (BCX) 11 catalyzed o-nitrophenyl β-xylobioside (ONPX) glycoside hydrolysis. The catalytic reaction exhibits a positive activation entropy, and an increase in ionic strength leads to a decrease in entropy without affecting the activation free energy, indicating that the entropy is predominantly influenced by electrostatic forces. Moreover, NMR measurements of electrostatic attractions within the active site demonstrate a positive entropy, aligning with molecular dynamics (MD) simulations showing that electrostatic interactions contribute to the entropic stabilization of the TS complex. These findings suggest that the positive entropy primarily originates from alterations in electrostatic interactions due to the formation of the oxocarbenium ion at C in the TS. Differences of electrostatic interactions in ES and TS modify hydrogen bonding of surrounding residues in the active site which causes their side chain dynamics and thus conformational entropy changes. Residues critical for the positive activation entropy are identified. A new BCX mutant with an increased activation entropy and catalytic activity is found.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验