Suppr超能文献

骨质疏松症患病率的变化趋势及重金属暴露的影响——基于可解释机器学习的研究。

Trends in the prevalence of osteoporosis and effects of heavy metal exposure using interpretable machine learning.

机构信息

Department of Scientific Research, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.

Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.

出版信息

Ecotoxicol Environ Saf. 2024 Nov 1;286:117238. doi: 10.1016/j.ecoenv.2024.117238. Epub 2024 Oct 28.

Abstract

There is limited evidence that heavy metals exposure contributes to osteoporosis. Multi-parameter scoring machine learning (ML) techniques were developed using National Health and Nutrition Examination Survey data to predict osteoporosis based on heavy metal exposure levels. For generating an optimal predictive model for osteoporosis, 12 ML models were used. Identification was carried out using the model that performed the best. For interpretation of models, Shapley additive explanation (SHAP) methods and partial dependence plots (PDP) were integrated into a pipeline and incorporated into the ML pipeline. By regressing osteoporosis on survey cycles, logistic regression was used to evaluate linear trends in osteoporosis over time. For the purpose of training and validating predictive models, 5745 eligible participants were randomly selected into training and testing set. It was evident from the results that the gradient boosting decision tree model performed the best among the predictive models, attributing to an accuracy rate of 89.40 % in the testing set. Based on the model results, the area under the curve and F1 score were 0.88 and 0.39, respectively. As a result of the SHAP analysis, urinary Co, urinary Tu, blood Cd, and urinary Hg levels were identified as the most influential factors influencing osteoporosis. Urinary Co (0.20-6.10 μg/mg creatinine), urinary Tu (0.06-1.93 μg/mg creatinine), blood Cd (0.07-0.50 μg/L), and urinary Hg (0.06-0.75 μg/mg creatinine) levels displayed a distinctive upward trend with risk of osteoporosis as values increased. Our analysis revealed that urinary Co, urinary Tu, blood Cd, and urinary Hg played a significant role in predictability.

摘要

重金属暴露是否会导致骨质疏松症的证据有限。使用国家健康和营养调查数据开发了多参数评分机器学习 (ML) 技术,以根据重金属暴露水平预测骨质疏松症。为了生成预测骨质疏松症的最佳预测模型,使用了 12 种 ML 模型。通过使用表现最佳的模型进行识别。为了解释模型,Shapley 加法解释 (SHAP) 方法和部分依赖图 (PDP) 被整合到一个管道中,并被纳入 ML 管道。通过将骨质疏松症与调查周期进行回归,逻辑回归用于评估骨质疏松症随时间的线性趋势。为了训练和验证预测模型,随机选择了 5745 名符合条件的参与者进入训练和测试集。结果表明,梯度提升决策树模型在预测模型中表现最佳,在测试集中的准确率为 89.40%。根据模型结果,曲线下面积和 F1 得分为 0.88 和 0.39。由于 SHAP 分析,尿液 Co、尿液 Tu、血液 Cd 和尿液 Hg 水平被确定为影响骨质疏松症的最具影响力的因素。尿液 Co(0.20-6.10μg/mg 肌酐)、尿液 Tu(0.06-1.93μg/mg 肌酐)、血液 Cd(0.07-0.50μg/L)和尿液 Hg(0.06-0.75μg/mg 肌酐)水平随着值的增加而呈明显上升趋势,与骨质疏松症的风险呈正相关。我们的分析表明,尿液 Co、尿液 Tu、血液 Cd 和尿液 Hg 在预测性方面发挥了重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验