Suppr超能文献

将代谢控制策略应用于工程化T细胞癌症治疗。

Applying metabolic control strategies to engineered T cell cancer therapies.

作者信息

Fox Andrea C, Blazeck John

机构信息

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 303332, USA.

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 303332, USA.

出版信息

Metab Eng. 2024 Nov;86:250-261. doi: 10.1016/j.ymben.2024.10.009. Epub 2024 Oct 25.

Abstract

Chimeric antigen receptor (CAR) T cells are an engineered immunotherapy that express synthetic receptors to recognize and kill cancer cells. Despite their success in treating hematologic cancers, CAR T cells have limited efficacy against solid tumors, in part due to the altered immunometabolic profile within the tumor environment, which hinders T cell proliferation, infiltration, and anti-tumor activity. For instance, CAR T cells must compete for essential nutrients within tumors, while resisting the impacts of immunosuppressive metabolic byproducts. In this review, we will describe the altered metabolic features within solid tumors that contribute to immunosuppression of CAR T cells. We'll discuss how overexpression of key metabolic enzymes can enhance the ability of CAR T cells to resist corresponding tumoral metabolic changes or even revert the metabolic profile of a tumor to a less inhibitory state. In addition, metabolic remodeling is intrinsically linked to T cell activity, differentiation, and function, such that metabolic engineering strategies can also promote establishment of more or less efficacious CAR T cell phenotypes. Overall, we will show how applying metabolic engineering strategies holds significant promise in improving CAR T cells for the treatment of solid tumors.

摘要

嵌合抗原受体(CAR)T细胞是一种经过基因工程改造的免疫疗法,它表达合成受体以识别和杀死癌细胞。尽管CAR T细胞在治疗血液系统癌症方面取得了成功,但它们对实体瘤的疗效有限,部分原因是肿瘤环境中免疫代谢特征的改变,这阻碍了T细胞的增殖、浸润和抗肿瘤活性。例如,CAR T细胞必须在肿瘤内争夺必需营养物质,同时抵抗免疫抑制性代谢副产物的影响。在这篇综述中,我们将描述实体瘤内导致CAR T细胞免疫抑制的代谢特征改变。我们将讨论关键代谢酶的过表达如何增强CAR T细胞抵抗相应肿瘤代谢变化的能力,甚至将肿瘤的代谢特征转变为抑制性较小的状态。此外,代谢重塑与T细胞的活性、分化和功能内在相关,因此代谢工程策略也可以促进建立或多或少有效的CAR T细胞表型。总体而言,我们将展示应用代谢工程策略在改善CAR T细胞治疗实体瘤方面具有巨大潜力。

相似文献

1
Applying metabolic control strategies to engineered T cell cancer therapies.
Metab Eng. 2024 Nov;86:250-261. doi: 10.1016/j.ymben.2024.10.009. Epub 2024 Oct 25.
2
Engineered CAR-Macrophages as Adoptive Immunotherapies for Solid Tumors.
Front Immunol. 2021 Nov 24;12:783305. doi: 10.3389/fimmu.2021.783305. eCollection 2021.
3
Obstacles and Coping Strategies of CAR-T Cell Immunotherapy in Solid Tumors.
Front Immunol. 2021 May 19;12:687822. doi: 10.3389/fimmu.2021.687822. eCollection 2021.
4
Engineering CAR-T Cells for Next-Generation Cancer Therapy.
Cancer Cell. 2020 Oct 12;38(4):473-488. doi: 10.1016/j.ccell.2020.07.005. Epub 2020 Jul 30.
5
Targeting metabolic pathway enhance CAR-T potency for solid tumor.
Int Immunopharmacol. 2024 Dec 25;143(Pt 2):113412. doi: 10.1016/j.intimp.2024.113412. Epub 2024 Oct 24.
6
Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities.
Expert Opin Biol Ther. 2018 Jun;18(6):653-664. doi: 10.1080/14712598.2018.1473368. Epub 2018 May 14.
7
Altered cancer metabolism and implications for next-generation CAR T-cell therapies.
Pharmacol Ther. 2024 Jul;259:108667. doi: 10.1016/j.pharmthera.2024.108667. Epub 2024 May 17.
8
Perspectives on Chimeric Antigen Receptor T-Cell Immunotherapy for Solid Tumors.
Front Immunol. 2018 May 22;9:1104. doi: 10.3389/fimmu.2018.01104. eCollection 2018.
9
Genetic Modification of Cytokine Signaling to Enhance Efficacy of CAR T Cell Therapy in Solid Tumors.
Front Immunol. 2021 Oct 14;12:738456. doi: 10.3389/fimmu.2021.738456. eCollection 2021.
10
Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells.
Front Immunol. 2018 Jul 31;9:1717. doi: 10.3389/fimmu.2018.01717. eCollection 2018.

本文引用的文献

2
Targeted gene delivery systems for T-cell engineering.
Cell Oncol (Dordr). 2024 Oct;47(5):1537-1560. doi: 10.1007/s13402-024-00954-6. Epub 2024 May 16.
3
GLUT1 overexpression enhances CAR T cell metabolic fitness and anti-tumor efficacy.
Mol Ther. 2024 Jul 3;32(7):2393-2405. doi: 10.1016/j.ymthe.2024.05.006. Epub 2024 May 7.
4
Selective refueling of CAR T cells using ADA1 and CD26 boosts antitumor immunity.
Cell Rep Med. 2024 May 21;5(5):101530. doi: 10.1016/j.xcrm.2024.101530. Epub 2024 Apr 29.
5
FOXO1 is a master regulator of memory programming in CAR T cells.
Nature. 2024 May;629(8010):211-218. doi: 10.1038/s41586-024-07300-8. Epub 2024 Apr 10.
6
FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy.
Nature. 2024 May;629(8010):201-210. doi: 10.1038/s41586-024-07242-1. Epub 2024 Apr 10.
7
GSNOR overexpression enhances CAR-T cell stemness and anti-tumor function by enforcing mitochondrial fitness.
Mol Ther. 2024 Jun 5;32(6):1875-1894. doi: 10.1016/j.ymthe.2024.03.033. Epub 2024 Mar 27.
8
ATF4-SLC7A11-GSH axis mediates the acquisition of immunosuppressive properties by activated CD4 T cells in low arginine condition.
Cell Rep. 2024 Apr 23;43(4):113995. doi: 10.1016/j.celrep.2024.113995. Epub 2024 Mar 23.
9
Engineering CREB-activated promoters for adenosine-induced gene expression.
Biotechnol J. 2024 Feb;19(2):e2300446. doi: 10.1002/biot.202300446.
10
Inosine induces stemness features in CAR-T cells and enhances potency.
Cancer Cell. 2024 Feb 12;42(2):266-282.e8. doi: 10.1016/j.ccell.2024.01.002. Epub 2024 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验