Holmes Eric C, Bleem Alissa C, Johnson Christopher W, Beckham Gregg T
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
Metab Eng. 2024 Nov;86:262-273. doi: 10.1016/j.ymben.2024.10.011. Epub 2024 Oct 28.
Bioconversion of high-volume waste streams into value-added products will be an integral component of the growing bioeconomy. Volatile fatty acids (VFAs) (e.g., butyrate, valerate, and hexanoate) are an emerging and promising waste-derived feedstock for microbial carbon upcycling. Cupriavidus necator H16 is a favorable host for conversion of VFAs into various bioproducts due to its diverse carbon metabolism, ease of metabolic engineering, and use at industrial scales. Here, we report that a common strategy to improve product titers in C. necator, deletion of the polyhydroxybutyrate (PHB) biosynthetic operon, results in a significant growth defect on VFA substrates. Using adaptive laboratory evolution, we identify mutations to the regulator gene phaR, the two-component response regulator-histidine kinase pair encoded by H16_A1372/H16_A1373, and the tripartite transporter assembly encoded by H16_A2296-A2298 as causative for improved growth on VFA substrates. Deletion of phaR and H16_A1373 led to significantly reduced NADH abundance accompanied by large changes to expression of genes involved in carbon metabolism, balance of electron carriers, and oxidative stress tolerance that may be responsible for improved growth of these engineered strains. These results provide insight into the role of PHB biosynthesis in carbon and energy metabolism and highlight a key role for the regulator PhaR in global regulatory networks. By combining mutations, we generated platform strains with significant growth improvements on VFAs, which can enable improved conversion of waste-derived VFA substrates to target bioproducts.
将大量废物流生物转化为增值产品将成为不断发展的生物经济的一个不可或缺的组成部分。挥发性脂肪酸(VFAs)(例如丁酸、戊酸和己酸)是一种新兴且有前景的源自废物的微生物碳循环利用原料。由于其多样的碳代谢、易于进行代谢工程改造以及可用于工业规模,食酸丛毛单胞菌H16是将VFAs转化为各种生物产品的理想宿主。在此,我们报告称,在食酸丛毛单胞菌中提高产物滴度的一种常见策略——删除聚羟基丁酸酯(PHB)生物合成操纵子,会导致在VFA底物上出现显著的生长缺陷。通过适应性实验室进化,我们鉴定出调节基因phaR、由H16_A1372/H16_A1373编码的双组分响应调节因子 - 组氨酸激酶对以及由H16_A2296 - A2298编码的三方转运体组件中的突变是导致在VFA底物上生长改善的原因。删除phaR和H16_A1373导致NADH丰度显著降低,同时参与碳代谢、电子载体平衡和氧化应激耐受性的基因表达发生了巨大变化,这可能是这些工程菌株生长改善的原因。这些结果深入了解了PHB生物合成在碳和能量代谢中的作用,并突出了调节因子PhaR在全局调控网络中的关键作用。通过组合突变,我们构建了在VFAs上生长有显著改善的平台菌株,这能够促进源自废物的VFA底物向目标生物产品的转化。