Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India.
J Chem Theory Comput. 2024 Nov 12;20(21):9673-9686. doi: 10.1021/acs.jctc.4c00645. Epub 2024 Nov 3.
The MARTINI force field is one of the most used coarse-grained models for biomolecular simulations. Many limitations of the model including the protein-protein overaggregation have been improved in its latest version, MARTINI-3. In this study, we investigate the efficacy of the MARTINI-3 parameters for capturing the interactions of peripheral proteins with model plasma membranes. Particularly, we consider two classes of proteins, namely, annexin and epsin, which are known to generate negative and positive membrane curvatures, respectively. We find that current MARTINI-3 parameters are not able to correctly describe the protein-membrane interface and the protein-induced membrane curvatures for any of these proteins. The problem arises due to the lack of proper hydrophobic interactions between the protein residues and lipid tails. Making systematic adjustments, we show that a combination of reduction in the protein-water interactions and enhancement of protein-lipid hydrophobic interactions is essential for accurate prediction of the interfacial structure including the protein-induced membrane curvature. Next, we apply our model to a couple of other peripheral proteins, namely, Snf7, a core component of the ESCRT-III complex, and the PH domain of evectin-2. We find that our model captures the protein-membrane interfacial structure much more accurately than the MARTINI-3 model for all of the peripheral proteins considered in this study. However, the strategy described in this study may not be suitable for oligomeric transmembrane proteins where protein-protein hydrophobic interactions should be increased instead of protein-lipid hydrophobic interactions.
MARTINI 力场是用于生物分子模拟的最常用的粗粒模型之一。该模型的许多局限性,包括蛋白质-蛋白质过度聚集,在其最新版本 MARTINI-3 中得到了改进。在这项研究中,我们研究了 MARTINI-3 参数捕捉外周蛋白与模型质膜相互作用的功效。特别是,我们考虑了两类蛋白质,即膜联蛋白和内吞素,它们分别已知能够产生负和正的膜曲率。我们发现,当前的 MARTINI-3 参数不能正确描述这些蛋白质中的任何一种的蛋白质-膜界面和蛋白质诱导的膜曲率。由于蛋白质残基和脂质尾部之间缺乏适当的疏水相互作用,导致了这个问题。通过系统调整,我们表明减少蛋白质-水相互作用和增强蛋白质-脂质疏水相互作用的组合对于准确预测包括蛋白质诱导的膜曲率的界面结构是必不可少的。接下来,我们将我们的模型应用于其他几种外周蛋白,即 ESCRT-III 复合物的核心组成部分 Snf7 和 evectin-2 的 PH 结构域。我们发现,与 MARTINI-3 模型相比,我们的模型更准确地捕捉了所有考虑的外周蛋白的蛋白质-膜界面结构。然而,本研究中描述的策略可能不适合寡聚跨膜蛋白,在这种蛋白中,应该增加蛋白质-蛋白质疏水相互作用,而不是蛋白质-脂质疏水相互作用。