Qiao Zhiyuan, Chen Ying, Pan Hongyu, Li Jichang, Meng Qingkai, Wang Jianfeng, Cao Yanxia, Wang Wanjie, Yang Yanyu
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
Int J Biol Macromol. 2024 Dec;282(Pt 5):137219. doi: 10.1016/j.ijbiomac.2024.137219. Epub 2024 Nov 2.
Although hydrogels have attracted increasing attention in the stretchable devices, the low adhesion properties and poor environmental adaptation still seriously restrict their development and application. Herein, we focused on the interaction between polymer networks with disperse media and their resultant influence on gel performance, and constructed self-adhesive and environment-tolerant gelatin/polyacrylamide supramolecular-polymer double-network (gelatin/PAM SP-DN) eutectogels using multiple supramolecular interactions between natural macromolecule and well-designed deep eutectic solvent (DES). The dual networks of gelatin/PAM SP-DN eutectogels produced significant supramolecular forces with DES, including hydrogen bonding and electrostatic interaction, contributing to enhance the energy dissipation capacity. Additionally, the Gelatin-PAM SP-DN eutectogels were more prone to generate strong bonding force to various substrates, showcasing both in-situ and ex-situ adhesion performance, and even being used for wet and underwater adhesion. The eutectogels revealed excellent environmental tolerance to maintain excellent mechanical flexibility, conductivity and adhesion at high and low temperatures, ensuring the constructed sensor to sensitively and reliably perceive strain, pressure and human motions over a wide temperature range. Also, the eutectogel demonstrated great potential as a temperature sensor. This work opens up a new horizon in the design of multifunctional and environment-tolerant natural macromolecule-based gel materials for flexible electronics, human-machine interaction and health diagnosis.
尽管水凝胶在可拉伸器件中受到越来越多的关注,但其低粘附性和较差的环境适应性仍然严重限制了它们的发展和应用。在此,我们聚焦于聚合物网络与分散介质之间的相互作用及其对凝胶性能的影响,并利用天然大分子与精心设计的低共熔溶剂(DES)之间的多种超分子相互作用,构建了具有自粘性和环境耐受性的明胶/聚丙烯酰胺超分子聚合物双网络(明胶/PAM SP-DN)低共熔凝胶。明胶/PAM SP-DN低共熔凝胶的双网络与DES产生了显著的超分子力,包括氢键和静电相互作用,有助于提高能量耗散能力。此外,明胶-PAM SP-DN低共熔凝胶更容易与各种基材产生强大的结合力,展现出原位和非原位粘附性能,甚至可用于湿态和水下粘附。该低共熔凝胶显示出优异的环境耐受性,能在高温和低温下保持出色的机械柔韧性、导电性和粘附性,确保所构建的传感器在很宽的温度范围内灵敏且可靠地感知应变、压力和人体运动。此外,该低共熔凝胶作为温度传感器也展现出巨大潜力。这项工作为用于柔性电子、人机交互和健康诊断的多功能且环境耐受性好的天然高分子基凝胶材料的设计开辟了新视野。