Oudghiri Khaoula, Taoufyk Azzeddine, Taourirte Moha, Ablouh El-Houssaine, Bahsis Lahoucine
Laboratoire de Recherche en Développement Durable et Santé, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco.
Laboratoire de Chimie de Coordination et d'Analytique (LCCA), Département de Chimie, Faculté des Sciences, Université Chouaïb Doukkali, P.O. Box 20, El Jadida 24000, Morocco.
Int J Biol Macromol. 2024 Dec;282(Pt 4):137169. doi: 10.1016/j.ijbiomac.2024.137169. Epub 2024 Nov 2.
The study addresses the challenge of developing sustainable and efficient catalytic systems for the synthesis of benzimidazole derivatives, which are of significant importance in the field of medicinal chemistry due to their diverse biological activities. The objective is to develop a recyclable and environmentally friendly catalyst utilizing copper(II)-loaded alginate hydrogel beads, which can facilitate the synthesis of these compounds while minimizing environmental impact. The preparation process entails crosslinking sodium alginate with copper(II) ions to form hydrogel beads, which are then washed and characterized through techniques such as scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Inductively coupled plasma (ICP), and Zeta potential to analyses the morphology, composition and porosity of the beads. The catalytic performance is evaluated through recycling tests, which demonstrate the catalyst's ability to maintain selectivity and activity over multiple reaction cycles. The Cu(II)-Alg hydrogel beads were used for synthesizing substituted benzimidazole derivatives in a water-ethanol solvent at room temperature. This method offers significant advantages, including extremely mild reaction conditions, short reaction times (<1 h), high yields (70-94 %), and ease of processing. The most significant results indicate that the Cu(II)-alginate catalyst exhibits a high loading capacity and retains its catalytic efficiency for at least 3 cycles, thereby highlighting its potential for sustainable applications in organic synthesis.
该研究应对了开发用于合成苯并咪唑衍生物的可持续且高效催化体系的挑战,苯并咪唑衍生物因其多样的生物活性在药物化学领域具有重要意义。目标是利用负载铜(II)的海藻酸盐水凝胶珠开发一种可回收且环保的催化剂,该催化剂能够促进这些化合物的合成,同时将环境影响降至最低。制备过程包括将海藻酸钠与铜(II)离子交联以形成水凝胶珠,然后对其进行洗涤,并通过扫描电子显微镜(SEM)、能量色散X射线光谱(EDX)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、电感耦合等离子体(ICP)和zeta电位等技术对其进行表征,以分析珠子的形态、组成和孔隙率。通过循环测试评估催化性能,测试表明该催化剂在多个反应循环中能够保持选择性和活性。将Cu(II)-Alg水凝胶珠用于在水-乙醇溶剂中于室温下合成取代苯并咪唑衍生物。该方法具有显著优势,包括极其温和的反应条件、短反应时间(<1小时)、高收率(70-94%)以及易于操作。最重要的结果表明,Cu(II)-海藻酸盐催化剂具有高负载量,并且至少在3个循环中保持其催化效率,从而突出了其在有机合成中可持续应用的潜力。