Suppr超能文献

绘制拓扑活性 DNA 混合物组成的变形动力学图。

Mapping deformation dynamics to composition of topologically-active DNA blends.

机构信息

Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.

出版信息

Soft Matter. 2024 Nov 13;20(44):8909-8923. doi: 10.1039/d4sm01065e.

Abstract

Blends of circular and linear polymers have fascinated researchers for decades, and the role of topology on their stress response and dynamics remains fervently debated. While linear polymers adopt larger coil sizes and form stronger, more pervasive entanglements than their circular counterparts, threading of circular polymers by linear chains can introduce persistent constraints that dramatically decrease mobility, leading to emergent rheological properties in blends. However, the complex interplay between topology-dependent polymer overlap and threading propensity, along with the large amounts of material required to sample many compositions, has limited the ability to experimentally map stress response to composition with high resolution. Moreover, the role of supercoiling on the response of circular-linear blends remains poorly understood. Here, we leverage enzymatic topological conversion to map the deformation dynamics of DNA blends with over 70 fractions of linear, ring and supercoiled molecules that span the phase space of possible topological compositions. We use OpTiDDM (optical tweezers integrating differential dynamic microscopy) to map strain-induced deformation dynamics to composition, revealing that strain-coupling, quantified by superdiffusive dynamics that are aligned with the strain, is maximized for blends with comparable fractions of ring and linear polymers. Increasing the supercoiled fraction dramatically reduces strain-coupling, while converting rings to linear chains offers more modest coupling reduction. We demonstrate that these results are a direct consequence of the interplay between increasing polymer overlap and decreasing threading probability as circular molecules are converted to linear chains, with a careful balance achieved for blends with ample ring fractions but devoid of supercoiled molecules.

摘要

环状和线状聚合物的共混物吸引了研究人员几十年的兴趣,拓扑结构对它们的应力响应和动力学的影响仍在激烈争论中。虽然线性聚合物采用更大的线圈尺寸,并形成比其环状对应物更强、更普遍的缠结,但线性链对环状聚合物的穿线可以引入持久的约束,从而显著降低其流动性,导致共混物中出现新的流变性质。然而,拓扑相关聚合物重叠和穿线倾向之间的复杂相互作用,以及需要大量材料来对许多成分进行采样,限制了以高分辨率将应力响应实验映射到成分的能力。此外,超螺旋对环状-线状共混物响应的作用仍未得到很好的理解。在这里,我们利用酶拓扑转化来绘制具有 70 多个线性、环状和超螺旋分子分数的 DNA 共混物的变形动力学,这些分子跨越了可能的拓扑组成的相空间。我们使用 OpTiDDM(光学镊子集成微分动态显微镜)将应变诱导的变形动力学映射到成分上,结果表明,应变耦合,由与应变一致的超扩散动力学来定量,对于具有相当比例的环状和线性聚合物的共混物达到最大值。增加超螺旋分数会显著降低应变耦合,而将环转化为线性链则会降低耦合程度。我们证明这些结果是由于环状分子转化为线性链时聚合物重叠增加和穿线概率降低的相互作用的直接结果,对于具有充足环状分数但没有超螺旋分子的共混物,达到了精细的平衡。

相似文献

1
Mapping deformation dynamics to composition of topologically-active DNA blends.
Soft Matter. 2024 Nov 13;20(44):8909-8923. doi: 10.1039/d4sm01065e.
2
Topological DNA blends exhibit resonant deformation fields and strain propagation dynamics tuned by steric constraints.
Acta Biomater. 2024 Dec;190:410-422. doi: 10.1016/j.actbio.2024.10.042. Epub 2024 Oct 29.
3
Unexpected entanglement dynamics in semidilute blends of supercoiled and ring DNA.
Soft Matter. 2020 Jan 7;16(1):152-161. doi: 10.1039/c9sm01767d. Epub 2019 Nov 27.
4
Topological tuning of DNA mobility in entangled solutions of supercoiled plasmids.
Sci Adv. 2021 May 12;7(20). doi: 10.1126/sciadv.abf9260. Print 2021 May.
6
Nonlinear rheometry of entangled polymeric rings and ring-linear blends.
J Rheol (N Y N Y). 2021 Jul;65(4):695-711. doi: 10.1122/8.0000186. Epub 2021 Jun 21.
7
Entropic Mixing of Ring/Linear Polymer Blends.
ACS Polym Au. 2022 Nov 28;3(2):209-216. doi: 10.1021/acspolymersau.2c00050. eCollection 2023 Apr 12.
8
Measuring Topological Constraint Relaxation in Ring-Linear Polymer Blends.
Phys Rev Lett. 2024 Sep 13;133(11):118101. doi: 10.1103/PhysRevLett.133.118101.
9
DNA as a Model for Probing Polymer Entanglements: Circular Polymers and Non-Classical Dynamics.
Polymers (Basel). 2016 Sep 7;8(9):336. doi: 10.3390/polym8090336.
10
Threading of Ring Poly(ethylene oxide) Molecules by Linear Chains in the Melt.
ACS Macro Lett. 2014 Aug 19;3(8):763-766. doi: 10.1021/mz5002096. Epub 2014 Jul 23.

本文引用的文献

1
Enzymatic cleaving of entangled DNA rings drives scale-dependent rheological trajectories.
Soft Matter. 2024 Mar 20;20(12):2750-2766. doi: 10.1039/d3sm01641b.
2
Cooperative Rheological State-Switching of Enzymatically-Driven Composites of Circular DNA And Dextran.
Adv Mater. 2023 Nov;35(46):e2305824. doi: 10.1002/adma.202305824. Epub 2023 Oct 15.
3
Entropic Mixing of Ring/Linear Polymer Blends.
ACS Polym Au. 2022 Nov 28;3(2):209-216. doi: 10.1021/acspolymersau.2c00050. eCollection 2023 Apr 12.
4
Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts.
Macromolecules. 2022 Dec 13;55(23):10723-10736. doi: 10.1021/acs.macromol.2c01264. Epub 2022 Nov 28.
5
Interpenetrating gels in binary suspensions of DNA nanostars.
J Chem Phys. 2022 Oct 7;157(13):135101. doi: 10.1063/5.0117047.
7
Topological digestion drives time-varying rheology of entangled DNA fluids.
Nat Commun. 2022 Jul 28;13(1):4389. doi: 10.1038/s41467-022-31828-w.
8
Quantifying Cytoskeleton Dynamics Using Differential Dynamic Microscopy.
J Vis Exp. 2022 Jun 15(184). doi: 10.3791/63931.
9
Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications.
ACS Macro Lett. 2018 Aug 21;7(8):968-975. doi: 10.1021/acsmacrolett.8b00498. Epub 2018 Aug 5.
10
Dynamical Entanglement and Cooperative Dynamics in Entangled Solutions of Ring and Linear Polymers.
ACS Macro Lett. 2021 Jan 19;10(1):129-134. doi: 10.1021/acsmacrolett.0c00551. Epub 2020 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验