School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Road, Edinburgh, EH9 3FD, UK.
MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
Nat Commun. 2022 Jul 28;13(1):4389. doi: 10.1038/s41467-022-31828-w.
Understanding and controlling the rheology of polymeric complex fluids that are pushed out-of-equilibrium is a fundamental problem in both industry and biology. For example, to package, repair, and replicate DNA, cells use enzymes to constantly manipulate DNA topology, length, and structure. Inspired by this feat, here we engineer and study DNA-based complex fluids that undergo enzymatically-driven topological and architectural alterations via restriction endonuclease (RE) reactions. We show that these systems display time-dependent rheological properties that depend on the concentrations and properties of the comprising DNA and REs. Through time-resolved microrheology experiments and Brownian Dynamics simulations, we show that conversion of supercoiled to linear DNA topology leads to a monotonic increase in viscosity. On the other hand, the viscosity of entangled linear DNA undergoing fragmentation displays a universal decrease that we rationalise using living polymer theory. Finally, to showcase the tunability of these behaviours, we design a DNA fluid that exhibits a time-dependent increase, followed by a temporally-gated decrease, of its viscosity. Our results present a class of polymeric fluids that leverage naturally occurring enzymes to drive diverse time-varying rheology by performing architectural alterations to the constituents.
理解和控制处于非平衡状态的聚合复杂流体的流变性是工业和生物学中的一个基本问题。例如,为了包装、修复和复制 DNA,细胞利用酶来不断地操纵 DNA 的拓扑结构、长度和结构。受此启发,我们设计并研究了基于 DNA 的复杂流体,这些流体通过限制性内切酶 (RE) 反应经历酶驱动的拓扑和结构改变。我们表明,这些系统表现出依赖于组成 DNA 和 REs 的浓度和性质的时变流变性质。通过时间分辨的微流变实验和布朗动力学模拟,我们表明超螺旋到线性 DNA 拓扑的转化导致粘度的单调增加。另一方面,经历片段化的缠结线性 DNA 的粘度表现出普遍的下降,我们使用活聚合物理论对此进行了合理化。最后,为了展示这些行为的可调性,我们设计了一种 DNA 流体,其粘度表现出先增加后减少的时变行为。我们的结果提供了一类聚合流体,它们利用天然存在的酶通过对组成部分进行结构改变来驱动不同的时变流变。