Zavez Alexis E, McSorley Emeir M, Yeates Alison J, Thurston Sally W
Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA.
Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland.
J Agric Biol Environ Stat. 2023 Sep;28(3):377-400. doi: 10.1007/s13253-023-00528-3. Epub 2023 Feb 14.
We present a Bayesian partial membership model that estimates the associations between an outcome, a small number of latent variables, and multiple observed exposures where the number of latent variables is specified . We assign one observed exposure as the sentinel marker for each latent variable. The model allows non-sentinel exposures to have complete membership in one latent group, or partial membership across two or more latent groups. MCMC sampling is used to determine latent group partial memberships for the non-sentinel exposures, and estimate all model parameters. We compare the performance of our model to competing approaches in a simulation study and apply our model to inflammatory marker data measured in a large mother-child cohort of the Seychelles Child Development Study (SCDS). In simulations, our model estimated model parameters with little bias, adequate coverage, and tighter credible intervals compared to competing approaches. Under our partial membership model with two latent groups, SCDS inflammatory marker classifications generally aligned with the scientific literature. Incorporating additional SCDS inflammatory markers and more latent groups produced similar groupings of markers that also aligned with the literature. Associations between covariates and birth weight were similar across latent variable models and were consistent with earlier work in this SCDS cohort.
我们提出了一种贝叶斯部分隶属模型,该模型用于估计一个结果、少量潜在变量以及多个观察到的暴露因素之间的关联,其中潜在变量的数量是预先指定的。我们为每个潜在变量指定一个观察到的暴露因素作为哨兵标记。该模型允许非哨兵暴露因素完全隶属于一个潜在组,或者部分隶属于两个或更多潜在组。使用马尔可夫链蒙特卡罗(MCMC)抽样来确定非哨兵暴露因素的潜在组部分隶属关系,并估计所有模型参数。在一项模拟研究中,我们将我们模型的性能与其他竞争方法进行了比较,并将我们的模型应用于在塞舌尔儿童发展研究(SCDS)的一个大型母婴队列中测量的炎症标记物数据。在模拟中,与竞争方法相比,我们的模型在估计模型参数时偏差较小、覆盖率足够且可信区间更窄。在我们具有两个潜在组的部分隶属模型下,SCDS炎症标记物分类通常与科学文献一致。纳入更多的SCDS炎症标记物和更多潜在组会产生类似的标记物分组,这些分组也与文献一致。在潜在变量模型中,协变量与出生体重之间的关联相似,并且与该SCDS队列早期的研究结果一致。