Suppr超能文献

人工智能算法在宫颈癌同步放化疗期间血液学毒性预测因素中的应用

Artificial Intelligence Algorithms in Predictive Factors for Hematologic Toxicities During Concurrent Chemoradiation for Cervical Cancer.

作者信息

Petre Ion, Negru Serban, Dragomir Radu, Bordianu Anca, Petre Izabella, Marc Luciana, Vlad Daliborca Cristina

机构信息

Department of Biostatistics, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU.

Department of Functional Science, Medical Informatics and Biostatistics, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU.

出版信息

Cureus. 2024 Oct 1;16(10):e70665. doi: 10.7759/cureus.70665. eCollection 2024 Oct.

Abstract

The most recent research conducted for the International Federation of Gynecology and Obstetrics indicates that, depending on the stage of cervical cancer (CC), several therapies can provide similar overall survival and progression-free survival rates. To determine the hematologic toxicities during concurrent chemotherapy for cervical cancer, we evaluated these two therapies (cisplatin or carboplatin). Hematologic markers have been studied using statistical models and descriptive statistics. Artificial intelligence models were built using the treatment data and all the information gathered from each patient after one or more administrations to forecast the CC stage. The information was gathered from stage III cervical cancer patients and provided by Oncohelp Hospital from the West Region of Romania. Many traditional machine learning techniques, such as naïve Bayes (NB), random forest (RF), decision trees (DTs), and a trained transformer called TabPFN, were used in the current study to obtain the tabular data. The algorithms NB, RF, and DTs yielded the greatest classification score of 100% when it came to cervical cancer prediction. On the other hand, TabPFN demonstrated an accuracy of 88%. The effectiveness of the models was evaluated by computing the computational complexity of traditional machine learning methods. Early detection increases the likelihood of a good prognosis during the precancerous and malignant stages. Being aware of any indications and symptoms of cervical cancer can also help to prevent delays in diagnosis. These hematologic toxicities, which have been demonstrated to grow linearly with lowering hematologic markers below their normal expectations, would significantly impair patients' quality of life.

摘要

国际妇产科联合会开展的最新研究表明,根据宫颈癌(CC)的阶段不同,几种疗法可提供相似的总生存率和无进展生存率。为了确定宫颈癌同步化疗期间的血液学毒性,我们评估了这两种疗法(顺铂或卡铂)。已使用统计模型和描述性统计方法研究了血液学标志物。利用治疗数据以及在一次或多次给药后从每位患者收集的所有信息构建人工智能模型,以预测宫颈癌阶段。这些信息是从罗马尼亚西部地区的Oncohelp医院的III期宫颈癌患者那里收集的。本研究使用了许多传统机器学习技术,如朴素贝叶斯(NB)、随机森林(RF)、决策树(DTs)以及一种名为TabPFN的经过训练的变换器,以获取表格数据。在宫颈癌预测方面,NB、RF和DTs算法的分类得分最高,达到了100%。另一方面,TabPFN的准确率为88%。通过计算传统机器学习方法的计算复杂度来评估模型的有效性。早期检测可提高癌前和恶性阶段预后良好的可能性。了解宫颈癌的任何迹象和症状也有助于避免诊断延误。这些血液学毒性已被证明会随着血液学标志物降至正常预期以下而呈线性增加,这将显著损害患者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a68f/11528638/e812f3004f54/cureus-0016-00000070665-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验